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Chapter 1. General Introduction

I. Introduction

Nonmarket valuation techniques are widely used to obtain welfare measures
associated with environmental goods and services. These welfare measures are, in turn,
important to policymakers when conducting cost-benefit analyses involving proposed
changes to environmental amenities, such as programs to clean up nutrient contamination in
lakes or to protect a given threatened species. The goal of this dissertation is to improve on
existing nonmarket valuation techniques by incorporating three sources of information rarely
used in the literature: (a) prior information on (and uncertainty about) the distribution of
willingness-to-pay (WTP), (b) individual perceptions regarding environmental quality, and
(c) contingent behavior data based on hypothetical environmental quality improvements.
Consideration of each of these information sources constitutes an essay in the dissertation.

The first essay focuses on incorporating prior information on the distribution of WTP
when designing dichotomous choice referendum (DCR) surveys. The DCR format is a stated
preference approach to nonmarket valuation in which survey respondents are presented with
a hypothetical change to the environment (e.g., an improvement in water quality) and asked
if they would vote yes on a referendum to provide this change with a given cost to them of
$B. The bid (B) is varied across individuals in the sample, allowing the analysts to estimate
the distribution of willingness to pay (WTP) for the change using standard discrete choice
models (e.g., logit or probit). Two broad approaches have been employed to choose the bids
used in discrete choice setting: the classical (or frequentist) approach and the Bayesian
approach. The classical design approach (e.g., Kanninen, 1993) uses assumed values for the
parameters that characterize the distribution of interest. The problem is that these are the very
parameters the survey is seeking to estimate. Moreover, such designs typically do not take
into account uncertainty about these parameters in the design. In contrast, the Bayesian

design approach, much of it developed in the bioassay literature, explicitly considers prior



information (and uncertainty) about the distributional parameters in constructing optimal
design (See, e.g., Tsutakawa, 1972, 1980; Chaloner and Larntz; 1989). However, relatively
little attention has been paid to Bayesian designs in the non-market valuation literature.
Kanninen’s (1991) dissertation appears to be the only study to consider Bayesian optimal
design in contingent valuation. Much has changed in the Bayesian design literature since
Kanninen’s work in this area.

In this first essay of my dissertation, I propose a Bayesian optimal design for use in
DCR surveys. As part of developing the design, I incorporate three design features. First, I
employ recently developed algorithms for computing the expected posterior variance of
WTP, i.e., beyond the normal approximation used by Kanninen. Second, rather than relying
on direct optimization routines (e.g., Nelder-Mead simplex, etc.), [ use Miiller and
Parmigiani's (1995) curve-fitting approach. Third, in addition to providing a single-stage
Bayesian design, I develop an optimal sequential design in which the bid design considers
both (a) the optimal sample allocation between a survey pre-test and final survey
administration and (b) the optimal bid design for each stage.

In addition to stated preference approaches, behavioral data (i.e., revealed
preferences) can be used model recreation demand, which can in turn be used to value
environmental goods and services. Recreation demand models link the environmental
attributes of a recreational site and the frequency with which the site is visited to infer the
value placed in these environmental amenities. However, they typically do not take into
account the linkage between the physical water quality attributes and an individual’s
perceptions of them. In particular, according to a recent survey (the Iowa Lakes Survey),
Iowa lakes are used extensively by residents for recreational boating, fishing, swimming,
with over sixty percent of the households visiting at least one lake in 2002 and the average
number of trips per year exceeding eight (Azevedo ef al., 2003). Yet there is substantial

concern about the water quality of these, with the USEPA designating roughly half of the



lakes in the Jowa Lakes Survey as being impaired (EPA Water Quality Inventory for the
State of Iowa, 2003). This observation raises two issues as to whether individual perceptions
regarding lake quality are consistent with the actual physical conditions and what form of
quality attributes drives individual's site choice decision: observed physical measures or
water quality perceptions?

The second essay focuses on individual perceptions regarding water quality. Two
questions emerge. First, how big is the disparity between the quality measures perceived by
individuals and those reported by scientists? Second, which of these measures (perceptions or
physical attributes) have a greater impact on the recreation behavior of individuals? Disparity |
in these quality measures is of interest to policymakers from the standpoint of welfare
measure. Adamowicz et al. (1997) found that welfare estimates based on perceptual data are
smaller than those using objective quality measures. Leggett (2002) showed the welfare
estimates are biased if they do not properly control for the quality perception of individuals.

In the second essay of my dissertation, I utilize detailed data on trip behavior and
water quality assessments of lakes collected from Iowa Lakes Survey 2003, along with
physical quality measures collected by the lowa State University Limnologist laboratory, to
investigate the impact of both water quality perceptions and physical measures on
recreational lake usage. The related hypotheses, survey result, correlation coefficients and
regression estimates linkiﬁg reported water quality perceptions with trip behavior and
physical measures are discussed in Chapter 3. A Repeated Mixed Logit Model is employed
to estimate recreational demand and test the hypotheses.

Finally, while recreation demand models typically benefit from considerable variation
in the price of the good in question (i.e., the travel cost), they often have available little
variation in the quality ofithe good being valued. To address this limitation, the recreation
demand literature increasingly makes use of contingent behavior (CB) data; i.e., asking

households how they would change their visitation patterns given a hypothetical change to



environmental conditions. Yet little is known as to whether the stated changes to these
hypothetical water quality changes are consistent with how household respond to actual
quality changes. Do they respond more to hypothetical water quality changes (e.g., with the
hope of influencing policy change, or because they ignore their budget constraint)?
Alternatively, do they respond less because they do not believe the changes will actually
occurs?

In the third essay, I measure the impact of hypothetical water quality improvements
on recreation demand patterns using data collected from the 2004 Jowa Lakes Survey. In the
survey, households were asked about how many trips they took in 2004, as well as how many
trips they anticipate taking in 2005 under both current and improved water quality. I develop
the model incorporating all three trip data sets in order to separately quantify the impact of
hypothetical water quality improvements and test for consistency with observed household
response to actual water quality. The model, related hypotheses, survey result are discussed
in Chapter 4 below. Similar to the second essay, a Repeated Mixed Logit Model is employed

to estimate recreation demand and test the hypotheses.
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Chapter 2. Bayesian Experimental Design: Application to Contingent Valuation

1. Introduction

The dichotomous choice referendum format is used extensively in contingent
valuation studies designed to estimate the value of environmental goods and services. In this
format, survey respondenté are presented with a hypothetical change to the environment (e.g.,
an improvement in wager quality) and asked if they would vote yes on a referendum to
provide this change with a given cost to them of $B. The bid (B) is varied across individuals
in the sample, allowing the analysts to estimate the distribution of willingness to pay (WTP)
for the change using standard discrete choice models (e.g., logit or probit). The problem is
that each person provides only limited information about their WTP (i.e., whether it is above
or below the threshold B), making the choice of B's presented to survey respondents an
important determinant of the precision with which the WTP distribution can be estimated for
a fixed sample size. This issue is analogous to the problem in the bioassay literature, where
dosages must be specified in medical experiments.

Two broad approaches have been used to choose the bids in the discrete choice
setting: the classical (or frequentist) approach and the Bayesian approach. The classical
design approach uses assumed values for the parameters that characterize the distribution of
interest. The problem here, of course, is that these are the very parameters the experiment is
seeking to estimate. Moreover, such designs typically do not take into account uncertainty
about these parameters in the design. Examples of classical design studies include Finney
(1971), Abdelbasit and Plackette (1983), Minkin (1987) and Wu (1987).

The Bayesian design approach, on the other hand, takes into account prior
information (and uncertainty) aiaout the distributional parameters in constructing optimal
design. Key papers on such designs in the bioassay literature include Tsutakawa (1972, 1980)
and Chaloner and Larntz (1987). They show that both the number of bids used and their

spread increase with the uncertainty about the distributional parameters.



Relatively little attention has been paid to Bayesian designs in the non-market
valuation literature. Indeed, Kanninen’s (1991) dissertation appears to be the only study to
consider Bayesian optimal design in contingent valuation. In the third chapter of her
dissertation, she considers the utility difference model of Hanemann (1984) and a standard
logistic distribution in developing the optimal bid design. The criterion she uses is to
minimize expected posterior variance of WTP based on a normal approximation to posterior
variance of WTP, essentially the same approach used by Tsutakawa (1980) and Chaloner and
Larntz (1989). One problem with the utility difference approach used by Kanninen (1991) is
that the median willingness to pay is the ratio of two normally distributed random variables.
In this case, the WTP distribution does not have finite moments. In addition, Sun, Tsutakawa
and Lu (1996) show that posterior distribution may include values substantially larger than
those expected by the approximating distribution.

In this chapter of my dissertation, I develop a Bayesian optimal design for use in
contingent valuation based on bid function approach suggested by Cameron (1988). The
advantage in doing so is that this avoids focusing on the ratio of two random parameters (as
is the case with the utility difference approach). As part of developing the design, 1
incorporate three additional design features. First, I use alternative algorithms for computing
the expected posterior variance of WTP, i.e., beyond the normal approximation used by
Kanninen. Specifically, I investigate the use of Tierny's (1986) Laplace approximation and
Markov Chain Monte Carlo methods. Second, rather than relying on direct optimization
routines (e.g., Nelder-Mead simplex, etc), [ use Miiller and Parmigiani's (1995) curve-fitting
approach. Third, in addition to providing a single-stage Bayesian design, I develop an
optimal sequential design in which the bid design considers both (a) the optimal sample
allocation between a survey pre-test and final survey administration and (b) the optimal bid
design for each stage.

The remainder of this chapter is divided into five sections. Section II provides an



overview of both the utility and bid function approaches to modeling discrete choice
referendum questions. Section III then summarizes both classical and Bayesian design
approaches (including C- and D-Optimality and Fiducial method in the classical approach),
alternative Bayesian design procedures, and recent developments in this area such as
simulating the exact expected posterior variance. Results using bid function and curve fitting
approaches in a single stage experimental design are presented in Section IV. In Section V
describes the two-stage Bayesian design results, with concluding remark following in Section

VL

I1. Welfare Measures under Referendum Format

Dichotomous choice referendum (DCR) format is a value elicitation procedure used
extensively in the environmental area. It is the one mechanism recommended by NOAA
panel (Arrow et al., 1993) for use in non-market valuation exercises, in part because of the
simplicity of the question format. Subsequent research has also touted the incentive
compatibility of this elicitation procedure (e.g., Carson, Groves and Machina, 2000). The
referendum procedure involves first establishing the attributes of the public good or resource
amenity to be provided under a proposed program. The respondents are then asked whether
or not they would vote in favor of the program given a specific direct cost to them. For
example, following by a description about hypothetical improvement of water quality in
Storm Lake, a DCR question might ask "Would you vote 'yes' on a referendum to improve
the water quality in Storm Lake to the level described above? The proposed project would
cost you $B." The bid values (B) are varied across respondents. This questioning strategy is
attractive because it generates a scenario for each consumer which is similar to that
encountered in day-to-day market transactions. A hypothetical price B is stated and the
respondents merely decide whether to "take it or leave it". This is less stressful than requiring

respondents to state a specific value for the program and circumvents much of the potential



for strategic response bias. The drawback of the DCR format is that it provides only an upper
or lower bound on the respondent's true valuation.

Two basic approaches have been used to model DCR responses: the utility difference
approach developed by Hanemann (1984) and the bid function approach developed by
Cameron (1988). 1 briefly review each of these methods for welfare estimation.

The utility difference approach assumes that an individual's utility depends upon
whether the good in question (e.g., a water quality improvement) is provided, money income
¥, and a vector of individual characteristics, s. Let the index j denote the provision of the
good in question, where j=1 if the good is provided and =0 otherwise. The individual's utility

is assumed to take the form

u(j,y;s) =v(Jj,y;s)+¢;, 1)

where &; is i.i.d. random variable capturing unobservable aspects of the individual's

preferences. The utility function is typically assumed to be linear in income, with
u(j,yi8)=a,(s)+ By, +e;, e
where y, = y and y, = y — B. The individual is assumed to vote in favor of the program if
u(l,y —$B;s) > u(0, y;s). 3)
This inequality gives rise to

a,(8)+B(y—8B)+¢& >a(s)+By+g,

= a,(s)-a,(s)-fB>¢,—¢,.

“

Given n=¢, — ¢, and a(s) = ,(s)—a,(s), then a “yes” vote implies that
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Av=a(s)-p-B>n. (5)

If the unobservables are assumed to be i.i.d. and drawn from an extreme value distribution,
then n follows logistic distribution. The probability that an individual will accept a bid is

then given by

R = F,(Av) =1/{l+exp(~(a(s) - B-B))}, (6)

and the probability that he/she will not accept the offer is P, =1~ F, (Av). Since WTP is

defined to be amount of money that equates utilities from two states, we can write
wrp=28) ., 1 %)
BB

That is, WTP is a random variable with mean u =a(s)/f and variance o’ = var()/ B°.

Cameron (1988) focuses on the fact that, in the DCR question, the offered bid values
B provide a direct threshold on the individual's WTP. Indeed, because the threshold amounts
are varied across respondents, one is able to identify both the location and scale of the
underlying WTP distribution. This result is obscured in the utility function approach. Instead,
the utility theoretic approach focuses on estimating the "probability” that a respondent would
benefit from the proposed environmental change.

Cameron's bid function approach begins by assuming that the unobserved continuous
dependent variable is the respondent's true WTP for an environmental quality improvement,
W , such as water quality. The underlying distribution of W is assumed to be conditional on
a vector of explanatory variables, s, with a mean of §(s) . In the standard binary logit model,

we would assume that

W, =5(s)+u, @®
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where u, is assumed to have logistic distribution with mean 0 and scale parameter x . Given a
bid value B,, we assume that respondents will say "yes" to the referendum question if their

true WTP is greater than B,. Hence

Pr(yes) =Pr(W, > B,)
=Pr(u, > B, - 5(s)) )
=exp{—(B; - 5(s))/ x}/[1+exp{~(B; - 6(s))/ k}].

For both the utility and bid function approaches, the precision with which the
parameters of the model are estimated (for a given survey sample size) depends on the choice
of bid values B; . This problem is the same as the optimal experimental design of dose level in

quantal analysis in bioassay field. I review the experimental design in the following section.

III. Experimental Design

Much of the experimental design literature in a discrete choice setting has evolved in
the bioassay (or dose-response field). Dose-response models are used to characterize the
effect on laboratory animals of varying doses of a given substance or treatment. Most often,
the effect is measured in terms of the percentage of animals that die when administered a
specific dose. The model estimated is a probability curve (called tolerance distribution), often
assumed to be logistic. The specific quantity of interest varies, but analysts are often
interested in the effective dose level (ED, ) at which y percentile of animals will respond.

ED,,, for example, would indicate the dosage level at which half of the sample would be

50
expected to die. This is analogous in the non-market valuation situation where analysts are
interested in the median WTP (i.e., the program cost at which half the population would vote
"yeS").

Since responses of animals are not observable before the experiment is conducted,

parameters in the probability model of interest are not observable either. There are two
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approaches for optimal design which vary in terms of how these unknown parameters are
handled in the design process. The classical approach treats the parameters of interest as if
they are known prior to the experiment; e.g., drawn from prior studies or relying on a best
guess. On the other hand, the Bayesian approach takes into account uncertainty about the
parameters by assigning prior distribution to them. Each of these design approaches are
described in the following subsections.
A. The Classical Design Approach.

The optimal design for an experiment will, of course, depend upon the criteria or
objective function used to evaluate the outcome of the experiment. Three criteria are

prominent in the classical literature: D-Optimality, C-Optimality and Fiducial method.

1. D-Optimality.

D-Optimality uses as its objective the maximization of the determinant of the Fisher
information matrix; i.e., the negative of the expected value vof the Hessian of the log
likelihood function. The information matrix is asymptotiéally equivalent to the inverse of the
covariance matrix for maximum likelihood estimators. Thus, maximizing the determinant of
this matrix given a logistic response function corresponds, in some sense, to jointly
minimizing the asymptotic variances of the estimators. Minkin (1987) shows that the D-
Optimal design for estimating ED,,, consists of two dosage levels u—1.5434-0 and
H+1.5434.0 (where uand o are respectively the median and standard deviation of the
underlying response distribution), with each dosage level administered to half of the sample.
The problem, of course, from a practical point of view is that neither x nor o is typically

known with certainty prior to the experiment.
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2. C-Optimality.

A C-Optimality design minimizes the variance of a function of the estimated
coefficients. For example, consider a simplified version of the utility theoretic approach to
model the DCR response, where a(s) = « . The corresponding median WTP becomes
(a/ B). The C-Optimal design would seek to minimize the asymptotic variance of (& / B ),
where ¢ and ,B are maximum likelihood estimates of the model parameters. Wu (1987)
shows that efficient estimation of the median occurs with all design points at the median

value, i.e., a one-point design.

3. The Fiducial Method.

Another criterion that might be considered useful is the minimization of the length of
the fiducial (or confidence) interval (Finney, 1978) associated with a function of the
estimated parameters.' Under fiducial interval criterion, the optimal design is a 2-point
design distributed symmetrically around median of the response distribution when the sample
size is even and a 3-point design when the sample size is odd. Kanninen (1993) shows in the
context of DCR and the utility function approach that it is again optimal to have two bid
points (u —0.6105- o, 4+ 0.6105- o) distributed symmetrically around the median when the

sample size is 500.2

B. Bayesian Optimal Design Criteria
1. Overview

Lindley (1972) presented a two-part decision theoretic approach to experimental
design, which provides a unifying theory for most work in Bayesian experimental design.

Lindley's approach involves specification of a suitable utility function reflecting the purpose

! The fiducial and C-Optimal designs will be equivalent when the function of interest is linear in the parameters.
? The fiducial designs will generally depend on the sample size.
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and costs of the experiment. The best design is then selected to maximize expected utility.
Specifically, suppose that design points B are selected from some set D. The response
outcome vector y from a sample space Y will then be observed with probability p(y | B).
Based onYy, a decision r(y) will be chosen from some set A. Thus, the problem has two
parts: first the selection of B and then the choice of a terminal decision rule #(y) based on
observation y. The unknown parameters are 6 and the parameter space is ® . A general
utility function is of the form U(r(y),0, B,y) . For any design B, the expected utility of the

best decision is given by
¥(B)= [max [U(B,r(3),60,5)p@|,B)p(y| B)i6dy (10)
Y [C]

and the Bayesian solution to the experimental design problem is provided by the design B"
maximizing equation (10). In other words, Lindley's argument suggests that a good way to
design experiments is to specify a utility function reflecting the purpose of the experiment, to
regard the design choice as a decision problem and to select a design that maximizes the
expected utility.

To fix ideas, suppose that the problem at hand was one of testing a new drug. The
decision variable, »(y), in this case might be whether to put the drug on the market, which
will depend upon the outcomes of the drug testing. The utility function would ideally reflect
the cost of the testing, the value of the drug if it is found to be effective and the costs
associated with any ill effects (including death) from its use. The design points (B) could
include both dosage levels and sample sizes.

As in the case of classical designs, the optimal dosages (or bids in the valuation
context) depend upon the specific criteria used (i.e., the utility function in equation 10). If,
for example, U(-)is the expected gain in Shannon information (i.e., the Kullback-Leibler

divergence) between the prior and the posterior distribution on the parameters of interest,
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then a Bayesian version of D-Optimality results. In this dissertation, I follow the bulk of the
existing literature by using a squared error loss function, resulting in a Bayesian version of C-
Optimality.

Suppose that the only quantity to be estimated is a function of the coefficient g(8),
such as the median WTP for the utility theoretic model, (g(€) = a(s)/ /), and that the
squared error loss is appropriate. Under the squared error loss function, a design is chosen to

maximize the following expected utility:
v,B)=- [ [[2(0)-2(6)] p(».0|B)d0dy. (11)
Yo

The criterion function in equation (i 1) is a complex function of the bid design and, for a
given bid design, typically requires numerical integration techniques to evaluate. Fortunately,
two approximations to ‘¥, (B ) have been developed in the literature based on normal

approximations to the posterior distribution for #. Chaloner and Larntz (1989) use
01y,B~N@G,H,=[N-10,B)T"), (12)
whereas Kanninen (1991) and Tsutakawa (1980) use

0|y,B~N@,H, =[N-16,B)+V'T"), (13)

where I is the Fisher information matrix per observation, N is total number of observations in
the sample, and V is variance-covariance matrix of the prior distribution for the parameter
vector 8. The advantage of the specification in (13) is that the inclusion of ¥ not only keeps
the elements of H, in equation (13) bounded, but also is consistent with the idea that, when
the sample size is small, the posterior covariance matrix is not likely to differ greatly from

V. The posterior variance V[g(€)| y] is then approximated by the delta method using
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Vig(6)|yl=c() H,c(8), (14
where
c(0)-2L0) (15)

Under the normal approximation in equation (12), ¥, ( @) can be approximated by

#y(B) = [c(0)" {N-1(6,B)} "' c(6) p(6)d6 . (16)

Similarly, under the normal approximation in equation (13), the approximation to the

objective function becomes:
¢ (B)=- jc(H)T {N-1(6,B)+V "} c(0) p(0)db . (17).

That is, the squared error loss criterion yields a Bayesian version of C-Optimality,
minimizing the expected posterior variance of the function of interest. Both Chaloner and
Lamntz (1989) and Tsutakawa (1980) adopted this criterion.

2. Optimization of the Criteria Functions

In general, choosing the optimal bid design based upon the criteria function in either
equations (16) or (17) requires selecting the number of design levels, X, the levels themselves
(i.e., B,, k=1,---,K ), and the number of sample points per design level n,, with
EK: n =N 2 This is a complicated numerical optimization problem. In order to simplify the
k=1

problem, Tsutakawa (1980) restricted the designs he considered to ones that assigned the

same number of observations to each design point (i.e.,n, = N/K ), with design points

3 The sample size, N, is assumed fixed.
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spaced equally around the midpoint of the distribution being estimated; i.e.,
B =z+{k—-(K+1)/2}-w, (18)

where z is the midpoint and w is the interval width. Under these restrictions, criterion
function (17) is optimized, for given K, with respect to z and w, yielding z° (K ) and w (K).
Tsutakawa (1980) used a normal-gamma prior for parameters o and £ in equation (2) and
approximated the integrals in equation (17) by combining Gauss-Hermite and Gauss-
Laguerre quadrature methods. The optimal design was then determined by examining the
expected posterior variance values for various triplets ( K,z (K),w (K )) )

Chaloner and Larntz (1989) relaxed Tsutakawa's (1980) equally spaced design
restriction. Instead of taking the derivative approach, Chaloner and Larntz adopted the
Nelder-Mead simplex algorithm that does not require derivatives and directly obtains »,
and B, (k =1,---,K) for a given K. The design is then chosen that optimize the criterion on:
the smallest number of design points. In the last step, authors verified global optimality with
directional derivative over possible value of B.

Tsutakawa (1980) and Chaloner and Larntz (1989) both show that optimal design gets
vﬁder and number of design point K increases with parameter uncertainty. Chaloner and
Larntz show that, while Tsutakawa’s equally spaced design is 94% as efficient as non-
equally spaced design, the number of observations per design level is not necessarily same
over design point with uniform prior on parameters.

3. Recent developments in Bayesian Design.

There have been a number of recent developments in the Bayesian design literature
that are relevant to my dissertation. First, there are a number of papers that consider
alternatives to the normal approximation in equation (12) and (13). Sun, Tsutakawa and Lu

(1996) and Miiller and Parmigiani (1995) propose the Monte Carlo simulation approach to
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obtaining an exact evaluation of expected utility in optimal design. Sun, Tsutakawa and Lu
(1996) compare the performance of approximation to expected utility with that of exact
expected utility approach. They show, even though the solution to the design problem based
on the normal approximation is generally quite accurate, the approximation to the expected
posterior variance itself may be substantially understated. They also show that the error in the
asymptotic expected posterior variance relative to the exact expected posterior variance

1) increases with parameter uncertainty, 2) decreases with the number of design point and

3) decreases with the number of observations.

Miiller and Parmigiani (1995) rely on smoothness of expected utility with respect to
the design attributes to simplify the search for the optimal design. Specifically, they simulate
expected utilities for a series of design points, estimate a smoothed representation of the
expected utilities as a function of design characteristics, and then analytically derive the
optimal design. They show that design points obtained by the smoothing method provides a
consistent estimate of optimal design and suggest that curve-fitting method would be
appropriate for sequential deéi gn because computation is less costly. The basic steps are as
follows:

Step 1: A set of mid point and width values (z,(K), w;(K)),i =1,---,M are selected from the

set of possible designs D and design points B;(K) are obtained from equation (18)

for given K.

Step 2: 4,(B,), or W(B,), is obtained by Monte Carlo integration of the approximate
posterior variance over 6,(z;,w;), j =1,--,M ,where M is the number of Monte

Carlo simulation, drawn from prior distribution p(@]z,,w;). The approximated

posterior variance can be obtained by either Tierney and Kadane (1986)'s method or

the normal approximations in equation (12) or equation (13).

Step 3: A smoothed expected utility ¢, (z,,w, | K) is obtained by fitting ¢, (B,) with respect

to (z,(K), w;(K)),i=1,---,M using a locally weighted running line smoother.
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Step 4: The optimal design B” = (z" (K), w' (K)) is determined by evaluating
deterministically the maximum of ¢, (z,,w, | K), i.é.,

' (K),w (K)) = Maxz,wqﬁf (z,w|K).

IV. Single Stage Design

In this section, I focus my attention on the single-stage design in which the CVM
survey is implemented without a pre-test phase. This is similar to what Kanninen (1991)
considered. The two-stage design with a pre-test is considered in section V. Ibegin by
reviewing and replicating the basic results obtained by Kanninen (1991) in the third chapter
of her dissertation. Specifically, optimal classical and Bayesian bid designs are obtained
using the utility difference model proposed by Hanemann (1984). The performance of each
design is then compared using the expected posterior variance criterion. I then propose an
optimal bid design approach based on Cameron’s (1988) bid function representation of DCR
responses and I use both the Miiller and Parmigiani (1995) curve-fitting approach to bid

design and alternative approximations to the expected posterior variance.

A. Kanninen'’s Bayesian Designs

Kanninen (1991) adapts Tsutakawa’s (1980) two-parameter («, §) logit model of
response, the normal approximation to the expected posterior variance in equation (17)
above, and assumes a normal prior distribution for the parameter vector 8 =(a, ). She
advocates using a normal prior because maximum likelihood estimates of the parameter
vector are typically available for contingent valuation based on pre-test data. That is, the
prior distribution of the two parameters could be assumed to be distributed bivariate normal
based on the asymptotically normal pre-test estimates. Using this set-up, she obtains the same
results as Tsutakawa (1980) and Chaloner and Larntz (1989); i.e., that the optimal number of

design points and their spread increases with the prior uncertainty about the parameter vector
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0. However, if the prior uncertainty is low, she finds the optimal design reduces to the
standard result of a single bid point. She also develops an optimal Bayesian design for
double-bound model to enhance parameter estimate efficiency. In the remainder of this
section I describe the results from replicating her single-bounded design efforts.

Kanninen maximized equation (17) for given number of design points K, ranging
from 1 to 7 for the single-bound model with sample size N =500 . The prior means for & and
B are set to 2.5 and 0.01, respectively. This yields a modal WTP of 250. In one set of
examples, the prior variance of « is allowed to range from 0.1 to 2.1, while the variance of S
is fixed to 1e-6. The prior modal WTP thus has a variance ranging from 10 to 210.In a
second set of examples, the prior variance of « is held constant at 0.1 while the prior variance
of Branges from 1.e-6 to 1.3e-5. The prior covariance is always set to 0. One reason why
Kanninen sets the prior variance £ so low (relative to its prior mean) is to reduce the prior
odds that B is close to zero (and hence WTP goes to infinity).

I replicate Kanninen’s optimal bid design results when k=2, allowing the prior
variance of a to vary while fixing the prior variance of £ . Ithen compare the performance
of Bayesian design with that of classical design. Expected utility (in this case the expected
posterior variance of WTP) is evaluated at the C-, D-Optimality and Fiducial method design
points shown at Table 1.

Figure 1 plots the square root of the expected posterior variance s; = \/a for the
various classical criteria, i.e., i = C for C-optimal, = D for D-optimal, and = F for fiducial and
= B for Bayesian optimal designs. The prior variance of a was allowed to range from 0.1 to
2.1. In Figure 1, the horizontal axis is the implied prior standard deviation of WTP (g, ),
which ranges from 40 to 150. Figure 2 provides essentially the same information, but in

terms of the cost of using the various classical designs (relative to the optimal Bayesian

design)
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As anticipated, the expected posterior standard deviations (s,) are lowest for the
optimal Bayesian designs. At o,,,,=40.31, s, evaluated using the C-and D-Optimality, and
Fiducial designs is 9.43, 11.44, and 9.63, respectively, while s, for the Bayesian design is
9.34. The C-Optimality criterion dominates the Fiducial method until &,,, reaches 50. The
D-Optimality criterion is inferior to the C-Optimality until &,,,, reaches approximately 100
and is inferior to the Fiducial method until o, exceeds 125.

The results in Figures 1 and 2 make sense intuitively. The Bayesian and C-Optimal
designs employ similar objective functions both related to the variance in the estimated mean
WTP. The difference is that the Bayesian design takes into account prior uncertainty
regarding the mean WTP. When this uncértainty is low, the C-Optimal design does relatively
well. However, when this prior uncertainty is high, the classical design placing all bids at a
single point does poorly. In contrast, the classical Fiducial method uses two bids (at
(a £0.61)/ B)). At low levels of prior uncertainty, the C-Optimal design dominates. As this
uncertainty increases, however, having some spread in the bids becomes preferable and the
Fiducial design yields a lower value in s,. Similarly, the D-Optimal design, with the bids
spread even further (at (o £1.54)/ ), becomes preferable only at higher levels of prior
uncertainty.

So far, the results that we have seen are for when the prior standard deviation of &
varies while the prior standard deviation of £ is held fixed. On the other hand, the results
when the prior standard deviation of £ varies and the prior standard deviation of & remains
fixed highlights the drawback of the utility difference approach noted above. Specifically, if
the prior uncertainty about f increases to the extent that the value of f is likely to be close
to zero, it is then likely that the corresponding WTP becomes very large (since WTP=qa/ ).
Indeed, the moments for the prior on WTP do not exist (See e.g., Fieller, 1932; Curtiss, 1941;
Marsaglia, 1965; Hinkley, 1969). One approach is to limit the range of prior uncertainty

regarding the marginal utility of income (e.g., using a truncated normal prior on £) in order
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to get bid values for a given K. However, such limit on the variance of the parameter would

not fully reflect the uncertainty of WTP.

B. Bid Function Approach to Optimal Design

In contrast to the utility difference approach, the mean WTP derived from the bid
function approach is typically linear in the unknown parameters. In the remainder of this
section, I consider the simplest version of equation (8) in which §(s) =6 . I derive optimal
design points using the asymptotic approximation method and the equally spaced design
assumption in equation (18) for N = 500. The prior distributions for § and x are assumed to
be independent. The prior distribution of & is assumed to follow nomial distribution with
mean u,; and variance 7’ , while the prior distribution for «x is assumed to be triangular
distribution with mean m, and spread s, . The density of a triangular distribution with mean
m, and spread s, is zero beyond the range ( K, » Ky )» Where Ky, =m, —s, and

Kya =M, +5,, rises linearly from «,, to m,, and drops linearly to x,,,, . While the

Max
uniform distribution is sometimes used to model the uncertainty of a parameter (e.g., «), it
assumes that the parameter x is equally likely to take the values between x,;, and x,, . In
contrast, the triangular distribution describes the situation where the parameter x is most

likely to take the value of m,, with diminishing probability for regions away from m,_.

The prior density of (J,«) is then given by the pdf for 6 € R, x €[k, ;K1 5

P(S,K) o< exp{—(6 — 45)* / 20" }{[K — Ky, 14 + [ Ky — K11 =)}, (19)

where d =1if k € (x},,m, ) and d =0 otherwise.

The H, matrix in equation (13) is then

e 2 0 |
H, ={+V™)™", where V=|:O 26l (20)
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Using ¢(f) = (1, 0)’, the expected utility in equation (17) is maximized with respect to
(z, w) as in Tsutakawa (1980). The model has four parameters defining prior distributions,
(U5, 7, m_, s,) . The value of u; is assumed to be equal to 250. I consider values for 7
taken from the set {1, 10, 20, 30, 40, 50, 60, 70, 80, 90}, values of m_ taken from the set
{20, 30, 40, 50, 60, 70, 80} and values of s_from the set {5, 10, 15, 20, 30} in order to
examine how the optimal Bayesian bid design responds to:
e changes in the prior uncertainty about the mean WTP (i.e., changes in 7)
e changes in the mean dispersion of WTP (m, ); and
e changes in the prior uncertainty about the dispersion of WTP in the population (i.e.,
changesin s, ).
Numerical integration of equation (17) over & and x is performed and the optimal values for
(z,w) are obtained by Nelder-Mead algorithm. I also restrict my attention to a sample of
N =500 and designs that are symmetric about the mean WTP.
The results show how optimal design points respond to uncertainty in terms of the
mean and dispersion of WTP. First, consider the case when m, =20 and s, =5. Figure 3
illustrates how the optimal two point design changes for the bid function approach as the
prior standard deviation of § (i.e., 7)is varied. When 7 is equal to 1 and the analyst is
relatively certain about the mean WTP, the optimal design degenerates to a one point design
with all the bids placed at 250. However, as 7 increases above 1, the Bayesian optimal
design points diverge away from the single-point design placing the two bids further from the
mean WTP of 250. For example, the two-point design (common in a classical setting) puts
the bids at 161 and 340 when 7 =90.
Of course, two bids need not be optimal. Figure 4 illustrates what happens to the
optimal bid design if we allow the number of bid points to increase up to an eight-point
design. As the prior uncertainty regarding the mean WTP increases, it becomes optimal to

increase both the spread of the bids and the number of bids used. With 7 =30, three bids
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becomes optimal. By the time 7 doubles to 60, an eight point design dominates. Figure 5
illustrates the performance of the Bayesian designs for various values of K. The
corresponding eight-point provides an efficiency gain over a two-point design of about a
factor of three (see Table 2). However, although placing multiple bids (K > 3) yields the
apparent efficiency gain compared to two-point design when 7 is big, placing more than
four-bid points yields little efficiency gain. Therefore, placing more bids might not be
optimal in practice when an analyst considers the cost of the contingent valuation survey
design (e.g., cost of printing the survey with more than four-bid points). This suggests that a
two-or three-point design may often be sufficient in practice.

More generally, we might want to consider how the optimal design responds to
changes in 7, s, and m, . Since x measures the population dispersion in WTP, a large m,
corresponds to a large prior mean in the dispersion of WTP in the population, whereas a large
s, implies the uncertainty about this dispersion. For ease of exposition, I consider only the
two-point design case and fix the midpoint of the design at the prior median WTP (u ). In
this case, the only design decision is the width of the design interval, w.

Figure 6 presents the surface of optimal width w as a function of 7 and m_ at s,
equal to 5. The figure suggests that, for a given value of m_, the optimal design width is
increasing with the prior uncertainty about the mean WTP (i.e., 7 ). However, for a given 7,
the optimal width decreases with the mean dispersion in WTP (i.e., m, ). When 7 =20, the
optimal bid width is 49. This width drops to 33 when m,_= 30. For m, bigger than 30, the
optimal width is zero. In general, the point at which the optimal bid width drops to zero
appears to be a function of 7 and m, . In particular, if the ratio of 7 to m, (v, =7/m,_)is
less than one, the optimal width becomes to zero. However, as optimal width contour plots in
Figures 7 to 9 illustrate, the region in the optimal width remains zero disappears as the

uncertainty of the dispersion of WTP distribution (s, ) increases. It also appears that the
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optimal bid width has a convex relationship with respect tom,_; i.e., the optimal width
increases up to some m and decreases thereafter.

What does this suggest? For simplicity, suppose there is no uncertainty about the
dispersion of WTP distribution; i.e., s,= 0. For the ratio v, to be equal to one implies that the
prior mean in the dispersion of WTP () is equal to the uncertainty of mean WTP (7 ) so
that the WTP in the population has the same distribution as the mean WTP (') with the
same mean 250 and variance 7> = m? . Therefore, the posterior variance of mean WTP (&)
becomes the variance of WTP and the Bayesian design points becomes the C-Optimality
design placing one bid point at the mean WTP ( ;) 250. For the region where v, is less than
one, the Bayesian bid design becomes the C-Optimal design. On the other hand, when the
uncertainty about the dispersion of WTP distribution becomes significant, posterior variance
of mean WTP (&) diverges away from the variance of WTP. Therefore, there is less chance
for the optimal bid width to become zero.

Finally, the cost of using classical design (i.e., ignoring parameter uncertainty) is
shown in Figure 10 for m,_= 50. This cost is defined to be ratio of expected posterior
variance of the C-Optimal design to that of Bayesian design. Expected posterior variance of
C-Optimal design is obtained by evaluating equation (11) at C-Optimal design points (i.e.,
B,=B;=250). As expected, the ratio is bigger than 1 over the entire region of (7, s, ) because
Bayesian design minimizes the expected posterior variance. For s_= 5 (i.e., when the prior
uncertainty on the dispersion of WTP distribution is low) the performances of C-Optimal and
optimal Bayesian designs are close for all 7. However, as this prior uncertainty grows, the
Bayesian design performs substantially better than classical design. Likewise, for given s, ,
the cost of using the classical design generally increases with uncertainty about the mean
WTP (i.e., 7). The cost of using the C-Optimal design peak at s, =25 and 7 =70. The cost of

ignoring the prior uncertainty is generally substantial.
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C. The Curve-Fitting Method Result

In this section, I illustrate the Bayesian optimal design obtained using the curve-
fitting method recently suggested by Miiller and Parmigiani (1995).4 The point of this
exercise is to see whether the resulting optimal designs are similar to those obtained using the
asymptotic expected utility approach and standard optimization technique.® In addition, I
compare optimal designs obtained by approximating the expected posterior variance using
Tierney and Kadane’s (1986) method versus using the traditional normal approximation. As
Sun, Tsutakawa, and Lu (1996) show, even though the solution to the design problem based
on the normal approximation is generally quite accurate, the error in the normal
approximation relative to the exact posterior variance is substantial when parameter
uncertainty is high. Therefore, using more accurate approximation to posterior variance
might be crucial.® In conducting these comparisons, I consider nine prior specifications,
varying the uncertainty regarding the prior mean with 7 = {20, 50, 80} and the mean
population dispersion in WTP with m_= {20, 30, 40}. In all the comparisons g, is fixed at
250, the uncertainty regarding the population dispersion of WTP is fixed at s, =5, and the
sample size per bid is fixed at n, =250.

As described above, step 1 of the curve fitting approach requires the selection of a set
of bid designs, D, to use in éimulating points along the expected posterior variance function
#(B). In the case of symmetric two-point designs, this corresponds to specifying the set of
possible bid widths, w,. Miiller and Parmigiani (1995) recommend picking w;, i =1,---,M ,
randomly over a range of reasonable designs. I set this range to be (0,200).

Step 2 in the curve fitting approach requires the calculation of the approximated

* Miiller and Parmigiani (1995) note that it is not possible to make any universal recommendations between the
curve-fitting and standard optimization method. The choice depends heavily on specifics of the problem, such
as computational effort involved in evaluating the utility function, required accuracy, and smoothness of
expected utility.

51 will refer to the latter approach as the “standard method” in the remainder of this chapter.

® Tierney and Kadane (1986)'s posterior variance approximation has an absolute error of order O(n“3) ora
relative error of order O(n™?).
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posterior variance for eachvdesign point. Specifically, for each bid width, w,, j=1,---,M |
pairs (6, ;,y, ;) are drawn from the independent prior distribution (i.e., equation 19) and the
binomial distribution with probability of yes in equation (9). These simulated pairs are in turn
used to compute 'V, (w;) in equation (11).

Step 3 in the curve fitting approach requires fitting a curve to the set of observations
on ¥, (w,). Following Miiller and Parmigiani (1995), I use the locally quadratic regression
surface. Since this scatter plot smoothing uses the / nearest points for each data point,

Y, (w;), i=1,--,M , it requires the specification of how many data points are used as the
nearest neighbor around each of the point ‘¥, (w,) to fit a quadratic regression. This is called
the “span”. A larger span (e.g., 0.75) includes a 75% of the sample size around the point in
quadratic fit ¥, (w,) and generally results in a smoother curve. In contrast, a smaller span
(e.g., 0.25) uses a 25% of the sample size around each data point to fit ‘P, (w,), allowing for
greater curvature in the approximating function P, (w,) . I consider span widths of 0.25, 0.50,
and 0.75.

Finally, in step 4 of the curve fitting approach, the optimal bid width (w") can then be
selected by finding the minimum of ¥, (w,) . That is, one can simply sort the pair of
(w,,'P, (w,)) in ascending order with respect to ¥, (w,) , yielding the minimum ¥; (w,) and
corresponding optimal width w", as I do in this analysis.

Table 3 contains the optimal bid widths (i.e., w) using three methods: M1) the
standard method, M2) the curve-fitting method using the normal approximation to the
posterior variance in equation (13), and M3) the curve-fitting using Tierny's approximation to
the posterior variance. Both curve fitting approaches use a span of 0.75.

There are two comparisons of interest here. First, consider the comparison between
methods M1 and M2; i.e., comparing the standard and curve fitting methods, both using the
normal approximation to the posterior variance in equation (13). In this comparison, the only

difference lies in the use of curve fitting to find the optimal bid width. As Table 3 indicates,




28

the resulting bid width values for the two methods are very similar to each other, except for
7 =20, m_=40. Thus, in terms of optimization method, the curve-fitting method performs
well relative to the standard method.

The second consideration of interest is between methods M2 and M3; i.e., comparing
the two curve fitting methods, one using the normal approximation to the posterior variance
and the other using Tierny-Kadane’s approximation to the posterior variance. In general, we
would expect the Tierny-Kadane approximation to be more accurate than the normal
approximation. The bid width values at the secbnd and the third three columns of Table 3 are
almost same as well. This result shows that, in terms of the approximation to posterior
variance, and given the same optimization method (i.e., curve-fitting), the normal
approximation to posterior variance yields similar bid width values, compared to Tierny-
Kadane’s approximation method. This is consistent with earlier findings in the literature.

One thing to note is that the variation of bid values with m, 1s small for three
methods while the variation of bid values with 7 is large. This is due to the relative flat
curvature of expected posterior variance (EPV) surface with respect to m, . Figure 11 to 14
show the four EPV scatter plots from curve-fitting with normal and Tierny-Kadane
approximation, respectively. Figure 11 and Figure 13 show EPV scatter plots with mK= {20,
30, 40} and 7 =50 while Figure 12 and Figure 14 show EPV scatter plots with 7 = {20, 50,
80} and m, = 20. Figure 11 and Figure 13 show that as the mean dispersion of the
population WTP distribution increases, EPV scatter plots get flatter but essentially achieve
their minima at the same point. This results in less variation of bid values with m,_. On the
other hand, Figure 12 and Figure 14 show that as the uncertainty of mean WTP distribution
increases, the minima of the EPV scatter plot increases resulting in large variation of optimal
width with 7 . The EPV scatter plots in Figure 11 through 14 also suggest that, in some
settings, precisely identifying the optimal bid width is not crucial. For example, with 7 =50

and m,_ = 20, bid widths ranging from 10 to 120 yields similar EPV values (ranging from 20
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to 40). Thus placing two bids at 240 and 260 (i.e., w=20) yields a similar expected posterior
variance to placing two bids at 190 and 310 (i.e., w=120). In these settings, the precise
selection of the optimal bid width is less important. It also suggests that, rather than using the
optimal width of 102, there is little cost to using a round number, say 100.

Finally, the curve fitting approach requires the choice of the span used to fit ‘¥, (w).
Table 4 shows the sensitivity of the optimal width to the choice of the span. The Tiemy-
Kadane approximation results appear to be somewhat less sensitive to the span choice for all
three spans used, the optimal widths increasing with respect to both 7 and m, . On the other
hand, the optimal width from normal approximation appears to be more sensitive to the
choice of the span. For example, optimal width is not monotonically increasing with respect
to m, for each of three spans and this becomes apparent as span is at 0.25. When span is set
at 0.25, 25 percent of M observations around for each data point are used to fit the curve.
Therefore, the local variation for each observation will be kept. On the other hand, when span
is set at 0.75, there is less variation for each observation because the variation is averaged
out. In general, a lower span seems preferable so as to not lose the variation of expected

posterior variance surface.

V. Two Stage Design
A. Solution to Sequential Design

The results from the previous section indicate that Bayesian design techniques can
provide substantial improvements in the expected posterior variance of the mean WTP
obtained from dichotomous choice surveys. The standard optimization and curve fitting
approaches yield similar results. However, one reason for introducing curve fitting
techniques is that they can be particularly useful in a sequential design setting; i.e., when a
survey (or experiment) is to be conducted in waves. This is commonly done in contingent

valuation studies in which a pre-test version of the survey is administered so as to better
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choose the bids used in the final survey mailing.”

When an experiment is to be performed sequentially in two stages, the design for the
second stage, upon completion of the first stage, is just a one-stage problem with the
posterior distribution after the first stage being used as the prior for the second. The problem
in sequential design is to choose the first stage design that will optimize the overall
experiment in some sense. However, direct implementation of dynamic programming
solutions are extremely computation intensive. As Miiller and Parmigiani (1995) suggest, the
curve-fitting method can be used to reduce computation time in a sequential design structure.
In this section, I develop an optimal sequentiél design in which the bid design considers both
the optimal sample distribution between a survey pre-test and formal survey administration
and the optimal bid design for each stage under the assumption that a balanced two point

“design (K=2) is used with mid point known to be 250. The asymptotic normal approximation
is used in computing the expected posterior variance. |

Sequentially, suppose we are conducting a contingent valuation survey with a fixed
sample size of N. The goal is to design optimal bids for pretest and complete survey to
estimate mean WTP, & . In order to do this, the researcher must specify the fraction of the
overall sample (1) to allocate to the pre-test sample size. Thus, the sample size for the pre-
test becomes N=A N and the sample for the final implementation becomes N,=(1-A)N .
The tradeoff here is that by allocating more of the sample to the pre-test, the uncertainty
regarding the WTP distribution shrinks and one can better design the bids for the final
implementation. However, in doing so, there are fewer observations left for the final
implementation and it becomés less informative itself.

Given A, the next stage in the design problem is to choose optimal widths w; and w,

for each stage. Similar to previous sections, I assume equally spaced design framework.

7 The last thing a surveyor wants is to have set the bids so huge that everyone says “no” or so low that everyone
says “yes”.
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Usually, the solution cannot be obtained in closed form. One solution to get around this
problem is to ignore the sequential nature of the problem. However, this would be ineffective
in that it would ignore information obtained in stage 1 in setting the bid levels in stage 2,
which was the very reason for conducting the pre-test. Instead, in this section I use a
simulation based design yields to determine optimal design, conveying its inherently
sequential nature.

The curve-fitting based implementation of a sequential design algorithm is as follows:

Step 1: A set of sample portion and width values for each stage (4,,w;, w’),i =1,---,M are
selected from the set of possible designs D' and D? and design points B} (K)and
B’ (K) are obtained from the equation (18) for given design point, K =2.

Step 2: For each design point (4,, B} (K),B?(K)) draw 8, y,,and y, from the prior and
likelihood functions respectively. Compute the approximate posterior
variance I*(8 ,4,B*(K),y,)+(I'(@ ,A,B'(K),y,)+V '), where I'is the Fisher
information matrix at the stage s and V is prior covariance matrix.

Step 3: The second stage EPV, ¥?(4,,B;,B},y,,) in equation (10) is obtained by Monte
Carlo integration of the 1%(6,,4,,B} (K),y,))+(I'(,,4,, B} (K),y;)+V ") over 6,,
y:(B'(K),B*(K)),and y,(B'(K),B*(K)), where M is the number of Monte Carlo
simulations, drawn from prior distribution and likelihood functions for given design
points.

Step 4: A smoothed expected utility for the second stage W' (4, B!, B2, y,;) is obtained by
fitting W*(4,,B;,B?,y,) withrespect to (4,,B; (K),B?(K))and y,,, using a locally
weighted running line smoother.

Step 5: The second stage optimal design B*' is determined by evaluating deterministically
the maximum of ¥ (B}, B?, y,,) over D*.

Step 6: The first stage optimal design B" is determined by evaluating deterministically
¥Y"(A,,B))=¥(A,B},B (A,,B}(K),y,),¥,) » which is obtained using a locally
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weighted running line smoother. " is then analytically optimized with respect to
B!

Step 7: The optimal sample portion A" is determined by optimizing deterministically
¥ (4,B")=Y(A, B ,B” (4, B] (K),y,:)»y,;) over A, which is obtained using a

locally weighted running line smoother.

B. Implementation Result

Sequential design is implemented for 7 = {20, 30, 40, 50, 60, 70, 80, 90} with
m, =20, s, =15, and the number of Monte Carlo simulation M = 3,000. Scatter plot
smoothing is conducted with the span equal to 0.75.

Table 5 shows the optimal sample allocation ( A ) and optimal widths for the pre-test
survey and complete survey, respectively, at the number of Monte Carlo simulation (M)
equal to 3,000. Several results emerge. First, for low levels of initial (prior) uncertainty
regarding the mean WTP (7 < 60), a relatively small proportion of the sample is allocated to
the pre-test (typically less than 25%). However, when this prior uncertainty becomes large,
(e.g., ¢ >70) amuch larger proportion of the sample is allocated to the pre-test. However, it
should be noted that the trade off between a small or large pre-test is a relatively close one.
Figure 15 provides a graph of W (4;,B},B?") for the case 7 =80. While ' =73% is
optimun, it is not much preferred to A’ close to 30%. Second, optimal width at the pre-test
survey is wider than the complete survey except for 7 =20.% This makes intuitive sense as the
pre-test is being used to provide information for the second stage. The second stage, on the
other hand is better informed and, hence, can use a narrower bid design. As the uncertainty of
mean WTP increases, the pre-test optimal width increases with the prior uncertainty which is

similar result to the single stage design. On the other hand, the complete survey optimal

¥ As shown in the single stage design, the ratio of v, is equal to one so that the Bayesian optimal design
becomes C-Optimal design.



33

width narrows down to 50 or less for 7 > 70.

The sequential design illustrated above fixed the design mid points for both the pre-
test and complete survey stage at 250 (i.e., ¢, =250). It is natural to do this at the pre-test
stage, since our prior mean WTP is 250. However, in some senée, it is unrealistic to fix the
complete survey mid point at 250 because the very reason why the researcher relies on the
sequential design is to collect information about the population mean WTP. An extension of
the above analysis would be to optimally choose the mid point of the complete survey stage
as a choice variable in the steps described in the previous section. For example, at step 1, one
could also randomly draw the mid point for the complete survey from the region (e.g.,

z? €(0, 300)), with the design choice set then being (4,, w}, zZ,w?), i=1,--,M . The bid
points B and B’ would obtained from the equation (8) and the rest of the steps conducted as
described in the previous section. The implementation of the modified steps remains as one

for further study.

VI. Conclusion

Optimal design in contingent valuation is a crucial step in the efficient estimation of
the WTP for environmental goods and services. The efficient estimation of WTP is
important, in turn, in developing environmental policies. The purpose of this chapter in my
dissertation was to illustrate the benefits and consequences of including prior information
(and prior uncertainty) in the design process. Both the Classical and Bayesian design
approaches were applied to the bid function approach to modeling WTP responses from a
dichotomous choice referendum survey. As noted above, using the bid function approach,
rather than Hanemann’s (1982) utility difference approach (as in Kanninen, 1982), avoids
problems associated with the moments of the ratio of two normal variables. In the case of a
single stage design, the chapter also illustrates the use of alternative approximations to the

expected posterior WTP (i.e., the normal approximation versus the Tierny-Kadane method)
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and alternative optimization technique (i.c., direct optimization versus curve fitting). In
general the results indicate that 1) optimal spread in the bids increases with the parameter
uncertainties; 2) the optimal number of bid points (K) increases with the parameter
uncertainties; and 3) the cost of ignoring the uncertainty about the parameters of WTP
distribution can be substantial. These results are similar to those obtained using the utility
difference approach. In addition, curve-fitting method is shown to be a usable alternative to
direct optimization routine; i.e., Bayesian optimal bids using the standard method are similar
to those obtained using the curve-fitting method. In terms of posterior variance
approximation methods, the normal approximation to posterior variance results are similar to
those obtained using Tierny-Kadane’s method. The curve fitting section also illustrates a
number of important points regarding the optimal bid design. First, the expected posterior
variance (EPV) surfaces depends all of the attributes of the prior distribution; i.e., on the |
prior distribution of the mean WTP and on the prior distribution for the dispersion of WTP in
the population. Second, the impact of the uncertainty regarding the mean WTP (7) appears to
be larger than that of mean dispersion in the population WTP (m, ). Third, the EPV is
relatively flat over a wide range of optimal width values. This suggests that while it is
important to incorporate prior information in designing the optimal bid values, identifying
precisely the optimal bids is not crucial.

Finally, curve-fitting method makes it easier to implement the sequential design. I
find that the number of sample size for the pre-test survey and the pre-test stage optimal bids
increase with the parameter uncertainty and they are wider than those of the final survey
stage. The width between the optimal bids at the complete survey stage shrinks as the sample
size at the pre-test stage increases.

Finally, the results of this chapter provide some practical guidelines to the optimal bid
design for researchers conducting contingent valuation surveys:

e Even when there is substantial uncertainty about the distribution of WTP, placing two
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or three point design provides most of the gains from optimal Bayesian design.
Since the impact of the uncertainty about mean WTP on the optimal bids is bigger
than that of the mean dispersion of WTP, placing wider bids is recommended when
the uncertainty about mean WTP is huge.

Due to the flat curvature of EPV surface, precise selection of optimal bids is less
important, for example, placing two bids at 240 and 260 yields similar performance
as placing two bids at 190 and 310. This suggests that there is room for rounding in
specifying the final bids.

The sequential design suggests that there is a tradeoff in the allocation of the sample
between the pre-test and final survey and the optimal bids at the final stage depends

on this allocation.
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Appendix: Tables and Figures

Table 1. Optimal Design Points for Classical Approach

D-Optimality C-Optimality Fiducial Method
X (1.5434 + a)/B o/f (0.6105 + 0)/p
x, (-1.5434 + a)/PB o/B (-0.6105 + a)/B

Table 2. Expected Posterior Variance — Bid function approach

T K=2 K=3 K=4 K=5 K=6 K=7 K=8 Optimal X
1 0.009 0.009 0.009 0.009 0.009 0.009 0.009 1.000

10 0.049 0.050 0.050 0.050 0.050 0.050 0.050 2.000
20 0.066 0.067 0.067 0.067 0.067 0.068 0.068 2.000
30 0.087 0.084 0.084 0.084 0.084 0.085 0.085 3.000
40 0.117 0.104 0.103 0.103 0.103 0.104 0.104 6.000
50 0162 0.128 0.124 0.124 0.123  0.124 0.124 6.000
60 0230 0.159 0.148 0.145 0.145 0.145 0.145 8.000
70 0333 0.198 0.174 0.169 0.167 0.167 0.167 8.000
80 0492 0251 0206 0.194 0.191 0.190 0.190 8.000

9 0.741 0324 0244 0223 0216 0.214 0.213 8.000




Table 3. Curve-Fitting method results

40

Curve fitting

Standard Method :
Normal Approximation® Tlerny-Kad:cme
Approximation®
m, 20 50 80 20 50 80 20 50 80
20 49 102 157 56 100 122 59 88 101
30 33 101 155 58 105 135 63 109 135
40 0 91 152 62 95 139 77 115 144

? Scatter plot smoothing is obtained using a span of 0.75.

Table 4. Impact of the choice of span on optimal width

Normal Approximation Tiermny-Kadane Approximation
Span = 0.50
m, 20 50 80 20 50 80
20 42 ' 94 133 44 90 99
30 43 103 131 56 110 127
40 55 91 144 56 114 153
Span = 0.25
20 51 88 146 58 88 94
30 41 103 118 67 104 135
40 48 4_96 141 71 122 159




Table 5. Sequential Design Implementation Result®

50 60 70 80

90

M 20

3,000 A 0.30
w, 2
w, 83

0.19 0.23 0.72 0.73
256 266 264 269
124 124 50 35

0.73
273
35

* m,_and s, are fixed at 20 and 15, respectively.
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Figure 3. Bid Function Approach — Two Point Design
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Chapter 3. Water Quality Perceptions and Site Choice Decisions

I Infroduction

According to the U.S. Environmental Protection Agency’s most recent national water
quality inventory (Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs,
2000), 45% of the lake acres in the nation are impaired. This assessment is based on physical
water quality measures. In Iowa, the problem is no better. Indeed, over half of the 131 lakes
included in the Towa Lake Valuation project are on the U.S. EPA's impaired list (EPA water
quality inventory for the state of Jowa, 2003).

Despite the fact that physical measures indicate water quality impairments in the
state, these same lakes are used extensively by lowans for recreational boating, fishing,
swimming, etc. According to the summary report of lowa Lake Valuation project (Azevedo
et al. 2003), approximately 62% of all Iowa households visited one of the 131 lakes in 2002,
with an average of about eight day-trips per year. Yet these same respondents indicated that
water quality was the most important factor they consider when choosing a lake for
recreation. Clear Lake in north-central Iowa is the center of many activities and is especially
lively in the summer months despite being on the lists of impaired lakes. Fishermen,
recreational boaters, swimmers and beach users all frequent the lake. As Ditton and Goodale
(1973) suggests, physical water quality is not necessarily the quality that attract or deter
recreation users.

The question is what form of quality attributes drives individual's site choice
decision: physical measures or quality perceptions? How do these affect trip behavior? This
chapter of my dissertation utilizes detailed data on trip behavior and water quality
perceptions collected from Iowa Lake Survey 2003 and physical quality measures collected

by the Iowa State University Limnology laboratory to investigate which measures have the
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greatest impact on the site choice decision.

A related issue of interest is whether individual water quality perceptions are
correlated with the available physical measures, i.e., to what extent do individual perceptions
align with physical measures of quality? Biases in quality perceptions are of interest to policy
makers from the standpoint of welfare analysis. If perceptions do influence recreation trip
behavior, but these perceptions differ from the corresponding physical measures (or the U.S.
EPA's categorization of them), the changes to the physical water quality of a lake may have
unintended impacts of lake usage and the corresponding welfare calculations may be
problematic.

The remainder of this chapter is divided into six sections. Section II provides a review
of the existing literature on water quality perceptions. Section III describes the trip behavior
and quality assessments data collected in the Jowa Lake Survey 2003 and physical measures
of 131 Iowa lakes collected from Dr. John Downing and his team. The repeated mixed logit
model (RXL) to be used in the analysis is described in Section IV. Model and welfare
estimation results are discussed in Section V and Section V1. Section VII provides

conclusions and an outline of the remaining research associated with this essay.

II. Literature Review

Recent studies of recreation demand show that physical water quality measures
significantly impact the site choice decision. Phaneuf, Herriges, and Kling (2000) estimated a
Kuhn-Tucker model analyzing angler behavior in the Great Lakes. They include catch rates
for particular fish species of interest as well as a toxin measure derived from the average
toxin levels given in a study by De Vault et al. (1989). The authors find that the toxin level, a

measure of the presence of environmental contaminants, significantly influences the
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recreation decision.

Egan (2003) estimates the demand for day-trips to 129 Iowa lakes using data from the
first year of the Iowa Lakes valuation project. Included in his analysis are 11 physical quality
measures (secchi depth, chlorophyll, nitrogen, total phosphorus, etc.) and a series of other
lake specific characteristics (ramp, wake, facilities, state park designation etc). His results
show that individuals do respond to physical quality characteristics in choosing where to
recreate. Egan (2003) goes on to estimate the willingness of Iowans to pay to improve the
physical water quality levels in the state.

The Egan (2003) analysis, however, does not explore the crucial iink between the
physical water quality measures and individual perceptions of them. Researchers often argue
that choices are made on the basis of perceptions. Yet, there has been relatively little use of
perceptions of quality attributes in recreation demand modeling in the past due to the cost of
collecting individual perception information. One ofithe few exceptions is Adamowicz et al.
(1997), which examines perceptual and objective quality attribute measures in discrete choice
models of moose hunting site choice behavior. They employed data collected from
recreational moose hunters in Alberta, Canada including actual and perceived hunting site
attributes (access, moose population and congestion) of hunters. Their analysis shows that the
model with perceptual attributes of a hunting site outperforms that of an objective quality
attribute, though only modestly. Two scenarios are considered for welfare estimation: one
involving closure of a site and the other involving a change in perceptions to the agency’s
objective measure for those individuals who have perceptions that are lower than the target
level. The authors find that welfare estimates obtained using the “perception” model are less
than that from the “objective quality” model for both scenarios. This is because individuals

are assumed to experience a welfare gain only when their perception of the site quality is
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below the agency target.

II1. Data and Survey Results

Two sources of data will be used in this chapter: results from the 2003 Iowa Lakes
Survey and physical water quality measures collected by the ISU Limnology Lab. These data
sources are described in turn in the following two subsections.

A. The 2003 Iowa Lakes Survey

The 2003 Towa Lakes Survey is the second year survey in a four year study, jointly
funded by the Jowa Department of Natural Resources and the USEPA, aimed at
understanding recreational lake usage in Iowa and the value placed on water quality in the
state. The survey was sent by direct mail in January of 2004 to a random sample 8,000
Iowans, collecting information on their recreation behavior as well as their assessment of
Iowa's 131 principal lakes. Standard follow-up procedures were used to encourage a high
response rate to the survey (see, e.g., Dillman, 1978, 2000), including a postcard reminder
mailed two weeks after the initial mailing and a second copy of the survey mailed one month
later. In addition, survey respondents were provided with a $10 incentive for completing the
survey. A copy of Jowa Lake Survey 2003 is included as an appendix to this chapter
(Appendix A).

The survey itself has three major sections. The first section (pp. 3-7) asks respondents
to report both how frequently they visited each of 131 lakes in the state during 2003 and to
rate those lakes they are familiar with in terms of water quality. The 10-point water quality
ladder (Figure 1) employed by EPA is used in this water quality assessment.” The water

quality ladder has been used in the past both to categorize lakes in terms of quality and in

® All figures and tables are in Appendix B.
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communicating potential water quality improvements (e.g., from "boatable" to "fishable" or
"drinkable"). The second section of the survey (pp. 8-9) consists of dichotomous choice
referendum questions and is not used in this essay. Section three, (pp. 10-11) collects socio-
demographic information, including age, gender, education, etc.

A total of 5,281 surveys have been returned. Allowihg for the fact that 219 surveys
were undeliverable and 61 individuals were deceased, this corresponds to a 68% response
rate. From the 5,281 completed surveys, the final sample of 5,052 individuals was obtained
as follows. Non-Iowans were excluded (47 observations) based on zip code. Anyone
reporting more than 52 total single day trips to the 131 lakes were excluded as well (182
observations). The analysis below focuses on single day trips only in order to avoid the
complexity of modeling multiple day visits. Defining the number of choice occasions as 52
trips per year allows one trip to one of the 131 Jowa lakes per week. While the choice of 52 is
arbitrary, it seems a reasonable cut-off for the total number of allowable single day trips for
the season. Invariably some of the respondents who recorded trips greater 52 did in fact take
this number of trips. However, since this survey was randomly sent out to Iowan, some of the
recipients live on a lake and it may be those individuals who record hundreds of "trips" are
simply returning to their sleep of residence.

Table 1 lists the summary statistics for trips and the socio-demographic data. The
average number of total single day trips to all 131 lakes is 6.97, ranging from zero to 52 trips
per year. The survey respondents are more likely to be older, male, have a higher income,
and be more educated than the general lowa population. Schooling is entered as a dummy
variable equaling one if the individual has attended or completed some level of post high
school education.

As indicated above, water quality assessment data were collected by directly asking
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the respondents to assign a number between 0 and 10 based on the water quality ladder
(Figure 1) for the lakes they visited in 2003 or considered visiting recently. The water quality
ladder, proposed by Carson and Mitchell (1983), was pictured page by page on the survey
with verbal descriptions. The top of the water quality ladder stands for the best possible
quality of water, while the bottom of the ladder stands for the worst. The lowest level is so
polluted that contact with it is dangerous to human health. Water quality that is "boatable"
would not harm an individual if they happened to fall into it for a short time while boating or
sailing. Water quality that is "fishable" is a higher level of quality than "boatable". Although
some kinds of fish can live in boatable water, it is only when water is "fishable" that game
fish like bass can live in it. Finally, "swimmable" water is of a high enough quality that it is
safe to swim in and ingest in small amounts.

The summary statistics for day trips (per capita) and median, mean, and standard
deviation of the water quality perception for the lakes are listed in Table 2. The sample size is
131 lakes. Total day trips per lake is divided by the total number of surveys sent out to the
local zone where a lake is located in order to standardize population size effect on trips. On
average, lowans took 0.36 trips per capita to each lake last year.

Although some individuals perceived that some of lakes were polluted dangerously,
most respondents perceived the 131 lakes to be safe for swimming and boating on average.
The mean water quality assessment ranges across lakes from 4'.1 1 to 6.81. The standard
deviation of the water quality assessment of a lake measured across individuals who rated the
lake ranges from 1.06 to 2.42. This suggests that for some lakes, individuals share very
similar perceptions regarding the lake’s quality. For example, for Green Castle Lake
(Marshall County), the standard deviation of water quality perceptions is 1.07 across 35

respondents. For other lakes, such West Lake (Osceola) with a standard deviation of 2.63
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across 62 respondents, the water quality perceptions are wide ranging.

An initial question regarding the lake perceptions data is whether or not it influenced
which lakes Iowan visited in 2003. To investigate this, Table 3 lists the number of day trips
per capita to the 20 best and 20 worst lakes sorted by their mean water quality assessments.
Although some lakes had few respondents assessing their water quality, the mean number of
day trips to the “best” lakes (with a mean assessment of 6.46) is roughly two and a half times
the mean number of trips to the “worst” lakes (which had a mean assessment of 4.89). The
best lakes, of course, do not have uniforfnly higher visitation rates. Ottumwa Lagoon
(Wapello), Lake Macbride (Johnson), Swan Lake (Carroll) and George Wyth Lake (Black
Hawk) in the “worst” lakes category all have higher visitation rates than Lake Wapello and
Little River Watershed Lake included in the “best” lakes category. More detailed analysis
will be required to tease out other factors influencing recreational site choices, such as
proximity to population centers. However, these aggregate data do suggest that water quality
perception likely influences the site choice decision.

It should also be noted that high quality assessments do not necessarily imply that the
lake is less contaminated (based on actual physical water quality measures). According to the
list of impaired lakes of Iowa, Lake Meyer, Lake Keomah, Lake Smith, and Lake Icaria are
impaired, even though they have high mean quality assessments. Moreover, four lakes
among the worst assessed lakes, including Mitchell Lake, Meyers Lake, Briggs Woods Lake
and George Wyth Lake are not on the list. This implies that individual's perceptions may not
agree with either EPA or physical water quality assessments.'® Correlation coefficients of

mean water quality assessment with the number of day trips and physical water quality

' Of course, factors other than physical water quality conditions may play a role in listing a lake on the
impaired water quality list.
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measures are calculated in the following subsection.
B. Physical Quality Measures

Table 4 lists the summary statistics of physical water quality measures. Secchi depth
is a measure for clarity of water surface indicating how far down into the water an object
remains visible. Chlorophyll is an indicator of plant biomass or algae and leads to greenness
in the water. Total phosphorus is usually the principal limiting nutrient in Iowa lakes,
meaning its levels most likely determines algae growth. Three nitrogen levels are provided,
including NH3+NH, (measuring particular types of nitrogen such as ammonia which can be
toxic), NO3;+NO, (measuring the nitrates in the water), and total nitrogen. Silicon is
important to diatoms which extract it from the water to use as a component of their cell walls.
Diatoms, in turn, are a key food source for marine organisms. The acidity of the water is
measured by "pH" with levels below 6 or above 8 indicating unhealthy lakes. Alkalinity is
the concentration of calcium or calcium carbonate in the water. Plants need carbon to grow
and all carbon comes from alkalinity, therefore alkalinity is an indication of the abundance of
plant life. ISS is the inorganic suspended solids, basically soil and silt in the water due to
erosion. VSS is volatile or organic suspended solids, both measures that will decrease clarity
in the water.

It is evident that considerable variation in physical water quality characteristics is
present across the lakes in Iowa. For example, Secchi depth varies from a low of 0.17 meters
to a high of 8.10 meters and total phosphorus varies from 17 to 384 pg/I., some of the highest
concentrations in the world. All of the physical measures are the average values for the 2003
season. Samples were taken from each lake three times throughout the year, in spring/early
summer, mid-summer, and late summer/fall, to include seasonal variation (for more detail on

this data collection procedures see http://limnology.eeob.iastate.edu).


http://limnology.eeob.iastate.edu
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According to EPA's "Nutrient Criteria Technical Guidance Manual (2000)", the four
paramount variables for nutrient criteria are total phosphorus, total nitrogen, chlorophyll, and
Secchi depth. Scientists consider inorganic suspended solids and organic suspended solids to
be crucial indicators as well. The question is, how close are the perceptions of individuals
and physical measures of EPA's and/or scientists? Further, do EPA’s water quality index
and/or scientist’s water quality index explain water quality perception?

EPA’s water quality index used in the water quality ladder is a weighted average of
up to nine quality indices based on physical quality measures including total phosphates
(PO,), total nitrates (NOj), total suspended solids, dissolved oxygen and pH. A water quality
index using the latter five variables is constructed using data from the ISU limnology lab."!
In addition, Carson’s Trophic State Indices (CSTI) for lakes based on Secchi depth
(CTSI_SEC), chlorophyll (CTSI_Chla), total phosphorus (CTSI_TP) are provided from the
ISU Limnology Lab.'? As described in Appendix D, a trophic state index is an objective
standard of the trophic state of any body of water whereas the water quality ladder index
represents a subjective judgment by a group of scientist.

Table 5 lists correlation coefficient of quality assessment with several physical
measures, EPA’s water quality index and Trophic State Indices. The correlations are
provided for the sample as a whole and for two subsamples: those reporting that they
engaged in water contact activities (e.g., swimming and jet skiing) and those who did not
(e.g., nature appreciation and picnicking). One might expect those engaged in water contact
activities might be more aware of and/or affected by the physical water quality conditions.

For the sample as a whole, day trips were found to be positively correlated with the

! Appendix C provides details regarding the construction of these water quality indices.
2 For details about Carson’s Trophic State Index, see Appendix D.
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corresponding water quality perception measure. This suggests, as indicated by Table 3, that
overall quality perceptions do influence trip behavior. The overall water quality assessments
also are generally consistent with the actually physical water quality measures. Specifically,
all of the physical measures are negatively correlated with the mean water quality assessment
except for secchi depth; clarity of the water has a positive relationship with the water quality |
ladder assessment (0.351). However, the degree of correlation varies by the physical water
quality measﬁre. For example, there is relatively little correlation between the water quality
assessment and nitrates, chlorophyll or pH. Water quality perceptions also appear to be
correlated with a number of existing water quality indices based on physical water quality
measures. EPA’s water quality index is positively correlated with water quality perceptions.
The various CTSI, as expected, consistently have negative correlations with water quality
perceptions, since lower CTSI’s correspond to higher levels of water quality. This indicates
that EPA’s and scientists’ measures of water quality are at least partly consistent with
individuals’ water quality assessments. At thé same time, it is important to note that these
correlations are by no means perfect. The correlation between the water quality perceptions
and the water quality index (both of which use the water quality ladder) is just over 0.21. A
number of single water quality measures have higher correlations with the water quality
perceptions, including secchi depth, ISS, and VSS. The CTSI_SEC index fairs somewhat
better, but still has a simple correlation coefficient of only -0.357.

The relationship between the physical measures and the overall water quality
perceptions also appears to vary by the type of activity engaged in at the lakes. About one
third of the households in the sample did not participate in water body contact recreation. As
Ditton and Goodale (1973) suggested, water quality perceptions might be not the same over

all respondents. Most recreation users participate in boating (43%), fishing (52%) and
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swimming (40%). Non-participants in water contact recreation enjoy camping (30%),
picnicking (43%), and nature appreciation and viewing wildlife (42%). Overall, 3,619
visitors participated in water contact recreation, whereas 1,433 did not.

The mean assessment of the water contact group is more highly correlated with day
trips (0.257) than for the non-contact group (0.047). Because they are more likely to
participate in boating, swimming, and fishing activity on the lake, higher quality assessment
would lead to more trips to lake. They are apparently aware of the levels of total nitrogen,
phosphorus and suspended solids, or at least their visible impacts. All of the correlation
coefficients are statistically different from zero at a 10% level except for the nitrates,
chlorophyll, and pH. On the other hand, for individuals who want to take a walk along the
beach at a lake, ride a bike or simply appreciate the lake’s natural surroundings, the water
quality itself may not impact them as much or they may have less direct contact with the
water in constructing an overall water quality prerception. For these households, the
correlation coefficient of day trips and most of physical quality measure (except for total
phosphorus, nitrogen, silica and inorganic suspended solids) are not statistically different
from zero."

These simple summary statistics concerning water quality assessments and physical
quality measures data again suggest that there is a linkage, though imperfect, between
individual water quality perceptions and the actual physical measures collected by scientists.
However, the linkage also appears to depend‘upon the recreator’s activities. Recreators’
activities influence on their site choice decision and their types of activities might in turn

impact their water quality perceptions. For example, if individuals prefer jet skiing or boating

13 Of course, the sample size is also smaller for this group, which will impact the precision with which the
correlation coefficients are estimated.
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to walking around the lake, they may choose a lake where motorized vessels are allowed or
one with a boat ramp, regardless of the water’s visibility. The question is whether or not
these facilities characteristics in turn end up impacting the individual’s water quality
assessment. To investigate this, the lake site characteristics were obtained from the lowa
Department of Natural Resources. Table 6 provides a summary of these site characteristics.
As Table 6 indicates, the size of the lakes varies considerably, from 10 acres to 19,000 acres.
Four dummy variables are included to capture different amenities at each lake. The first is a
“ramp” dummy variable which equals one if the lake has a cement boat ramp, as opposed to a
gravel ramp or no boat ramp at all. The second is a “wake” dummy variable that equals one if
motorized vessels are allowed to travel at speeds great enough to create wakes and zero
6therwise. About sixty-seven percent of the lakes allow wakes, whereas thirty-three percent
of lakes are “no wake” lakes. The “state park” dummy variable equals one if the lake is
located adjacent to a state park, which is the case for 39 percent of the lakes in our study. The
last dummy variable is the “handicap facilities” dummy variable, which equals one if
handicap amenities are provided, such as handicap restrooms or paved ramps. A concern may
be that handicap facilities would be strongly correlated with the state park dummy variable.
However, while fifty of the lakes in the study are located in state parks and fifty have
accessible facilities, only twenty six of these overlap.

The correlation coefficient of the boat ramp dummy variable with mean water quality
perceptions is positive and significant for water contact group whereas it is insignificant for
the non-water contact group. The disability facilities and state park dummy variables both
have positive correlation coefficients with water quality perceptions. However, these
correlations are insignificant at a 5 percent critical level with p-values ranging from 7 to 10

percent. Acreage of a lake has a positive correlation with the water quality perception,
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although it is not significant. These results suggests that individual’s water quality
perceptions are somewhat correlated with the lake site characteristics, with the boat ramp
charactéristic having the clearest effect.*

In order to investigate the linkage between water quality perceptions and physical
water quality measures and/or site characteristics, I ran a simple linear regression of mean
perceptions on physical measures and site characteﬁstics. Some physical measures are
logarithmically transformed (e.g., Chlorophyll, total phosphorus, total nitrogen, total and
cyano-bacteria), whereas others (Secchi depth, the nitrogen, silica and alkalinity) are entered
linearly according to Egan et al. (2004). Dissolved oxygen, total nitrates, pH, suspended solid
and turbidity are transformed to quality indices according to McClelland (1974) on which
EPA’s water quality index is based.' Finally, five lake-characteristic variables (log
transformed acres and the ramp, wake, state park and wake dummy variables) are entered.
All variables are normalized using their respective standard errors in order to compare the
size of the impact. The estimated coefficients are listed in Table 7. Overall, these physical
measures and lake characferistic variables explain about 39% (adjusted R?) of the variation in
water quality perception’s and the model appears to be significantly explaining the
perceptions (the F-value of the null hypothesis of all coefficients are zero is 3.93 with a p-
value of less than 0.01). Secchi depth, log transformed chlorophyll and total phosphorus,
alkalinity and square and linear terms of dissolved oxygen quality index and the square term
of total suspended solid quality index are significant at the 10% level. The signs of these

terms are generally as one would expect except for the turbidity quality index. Also, the boat

' 1t should be noted that the causation may run in the other direction in the case of lake attributes. For example,
boat ramps and lake facilities may be constructed at a lake site because they are generally of high quality and
the demand for such facilities is there.

15 See Appendix C.
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ramp and wake dummy variables appear to be significant and have a positive effect on water
quality perception. The result supports the evidence of a relationship between water quality

perception and the physical measures and site characteristics.

IV. Model

There are two competing hypotheses regarding the role of perceptions and physical
water quality measures in determining recreation demand. The first assumes that physical
measures influence site choices indirectly by influencing an individual’s overall perception
of each lake, whereas the second suggests the physical attributes influence behavior in a
complex fashion that cannot be captured by a single index or water quality ladder. Of course,
there is also the possibility that neither have a significant impact on lake usage, which may
be driven instead by other site characteristics such as facilities aﬁd proximity to population
centers. To investigate these alternatives, I consider a model of the utility derived from
visiting site j on choice occasion ¢ that nests both of these alternatives. Specifically, suppose

that the utility of individual i associated with visiting site j visit on choice occasion ¢ is given

by

= V(P,'j"Zj,Qj’Xj,si)+gz'j't

{ k'S, + &g, (1)
Q—-AP+BZ,+6Q,+y X, +g;, i=1-1,j=1--,Jt=1---T

it

i it

where V is the deterministic component of utility and &, is an error component which is an
iid extreme value random variable. The vector s, consists of socio-demographic
characteristics, while F; is the travel cost from each Iowan’s residency to each of the 131

lakes as calculated using PCMiler. Z; represents observable water quality attributes for lake
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J- O; denotes the overall water quality perception regarding lake j and X; dénotes other site
characteristics (including lake facilities and state park designation). Notice that the
parameters on the lake attributes (;) and «; are allowed to vary across individuals, allowing
for heterogeneity of preferences. Specifically, these parameters are assumed to be distributed
randomly across individuals in the population. The random parameter ¢, was introduced by
including a dummy variable D, which equals one for all of the recreation alternatives
(j =1,---,J) and equals zero for the stay at home option (j = 0), following Herriges and
Phaneuf (2002).

The random coefficient vectors for each individual, y; and @, can be expressed as the
sum of population means ¥ and & , and individual deviations from the means, z; and ¢,,
which represents the individual’s tastes relative to the average tastes in the population (Train,

1998).'® Therefore, we can redefine

y;=y+t; and
_ @)
i =0+
The partitioned utility function in (1) is then
{ K,Zi+77i0n ]=O (3)
YN =AB+ L +8Q,+V X +1y, j =100,
where
Eior > Jj=0
Ny = . 4)
v {r,.Xj +o ey, j=1J

16 Specifically, I assume that 7; ~ N(7,Z) where X is a (k x k) diagonal variance covariance matrix with
diagonal element o-fk for the k™ site characteristic. Similarly, c; ~ N(& ,0'3,) .
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is the unobserved portion of utility. This unobserved portion is correlated over sites and trips
because of the common influence of the terms 7, and ¢,, which vary over individuals. For
example, an individual with a large negative deviation from the mean of ¢, will be more
likely to choose the stay-at-home option on each choice occasion, the ¢, capturing in this
case some unobserved attribute of the individual causing them to prefer staying at home (e.g.,
they cannot swim or do not like fishing). On the other hand, someone with a large positive
deviation ¢, will tend to take many trips. The variation in they,’s allows the marginal effects
of site characteristics to vary across individuals. The random parameters y,and ¢, do not
vary over sites or choice occasions. Thus, the same preferences are used by the individual to
evaluate each site across time periods. Since the unobserved portion of utility is correlated
over sites and trip choice occasions the familiar IIA assumption does not apply.

Given that the ¢, ’s are assumed to be iid extreme value, the resulting model

it
corresponds to McFadden and Train’s (2000) mixed logit framework. A mixed logit model is
defined as the integration of the logit formula over the distribution of unobserved random
parameters (Revelt and Train, 1998). Let the vector of random parameters in the model
defined above be denoted by w, =(a;,¥;) and let £ =(,5,4,k) denote the fixed parameters.
If the random parameters, w;, were known then the probability of observing individual i
choosing alternative jon choice occasion ¢ would follow the standard logit form

o= PVa(@:0] “

D explV,, (@,,6)]
k=0

Since the w; are unknown, the corresponding unconditional probability, £, (€,£) is obtained

by integrating over an assumed probability density function for the w,’s. The unconditional
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probability is now a function of 8, where 0 represents the estimated moments of the random
parameters.17 This repeated Mixed Logit model assumes the random parameters are iid

distributed over the individuals with

P,(0,6) = [L;(0,)f (@,0)do, (©)

where f(w, |6) is the assumed distribution for the random parameters. No closed form
solution exists for this unconditional probability and therefore simulation is required for the
maximum likelihood estimates of 6.'*

Two hypotheses are of interest. The first hypothesis of interest is H,: #=0, i.e.,
whether or not physical quality measures directly impact the utility of visiting a given site
(beyond what is captured by the perceptions variable). The second hypothesis of interest is
H! :8 =0; i.e., whether or not the perceptions regarding water quality at the lake, based on
USEPA’s water quality ladder, influence individual household behavior (beyond what is
captured by direct physical water quality variables). Egan (2003)'s model is the restricted one
based on this second hypothesis. Adamowicz et al. (1997) compared two restricted models
and estimated WTPs: one is the model under the hypothesis 1 (using perceptual data only)
and the other one is under hypothesis 2 (using physical quality data only). The advantage of
the current work is that we have a much more extensive list of physical water quality
measures and perceptions data for a larger set of site alternatives.

One issue in using the water quality perceptions data in modeling site choice is that

we do not have data on this water quality perception for each individual and lake

' In the current model, 8 = (7, &, Oy1s"3044:0q)

'8 Train (2003) describes simulation methods for use with mixed logit models, in particular maximum simulated
likelihood which I employ. Software written in GAUSS to estimate mixed logit models is available from
Train’s home page at http://elsa.berkeley.edu/~train.
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combination. This is similar to the problem associated with catch rate data in standard
recreation demand models; i.e., because a household only visits a limited number of lakes,
individual catch rate information is typically only available for these visited lakes. Moreover,
the catch rates information itself is endogenous. Following the standard procedure used in
case of catch rate, the mean water quality assessment of a lake is used as a proxy variable for
water quality perception in this model because some lakes have a few visitors and

respondents providing water quality assessments.

V. Estimation Result
A. Specification

Although the model for testing the null hypothesis and welfare estimation is set in
equation (1), the functional forms to be useful for the physical water quality measures, lake
characteristics and socio-demographic variables are unknown. Economic theory provides
little or no guidance in terms of these choices. Egan et al. (2004), however, provides an
extensive investigation into the choice of functional form for water quality measures, lake
characteristics and socio-economic variables in their model of recreation demand.
Specifically, using data from the first year of the Iowa Lakes survey, they split the available
sample into 3 subsamples, using the first for specification search, the second for estimation
and the third for investigating out-of-sample predictions. They focused on modeling the role
of water quality characteristics in determining recreation demand patterns, holding constant
the manner in which both socio-demographics and other site characteristics impact
preferences. The specification search process involved comparing numerous combinations of

linear and logarithmic forms for the water quality measures. In the analysis below, I follow
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Egan et al.’s (2004) final specification for the physical measures, lake characteristics and
socio-demographic variables.

Socio-demographic characteristics are assumed to enter through the “stay-at-home”
option. They include age and household size, as well as dummy variables indicating gender
and college education. A quadratic age term is included in the model to allow for
nonlinearities in the impact of age. Site characteristic are included with random coefficients.
This is to allow for heterogeneity in individual preferences regarding site characteristics,
such as wake restrictions and site facilities. For example, some households may prefer to visit
less developed lakes with wake restrictions in place, while others are attracted to sites
allowing the use of motorboats, jet skis, etc. It is assumed that the random parameters y,are
each normally distributed with the mean (7, ) and dispersion (o, ) for each parameter.
Physical water measures ( Z; ) are categorized into five groups 1) Secchi depth,

2) Chlorophyll, 3) Nutrients (Total nitrogen and Total phosphorus), 4) Suspended solids
(Inorganic and Organic) and 5) Bacteria (Cyanobacteria and Total). The first four
characteristic groups directly impact the visible features of the water quality, making it more
likely that households respond to them. Bacteria is included because surveyed households
report it to be the single most important water quality concern (Azevedo ef al., 2003). Egan
et al.’s (2004) specification search results suggested bacteria, Chlorophyll, and nutrients
enter logarithmically and the remaining variables enter linearly. This model is referred to as
Model A. A more complex model, including pH, alkalinity, silicon, nitrates, and ammonium
nitrogen is referred to Model B. These additional variables are entered in a linear form,
except for pH for which is a quadratic term is also included.

A total of seven models are considered. The first four represent variations on models

A and B in Egan et al. (2004):
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Model A;: Model A as estimated in Egan et al. (2004)
Model A;: A; plus the water quality perceptions variable
Model B,: Model B as estimated in Egan et al. (2004)
Model B;: B; plus the water quality perceptions variable.
In terms of equation (3), the difference between models A, and A; (B, and B,) is that A; (By)
constrains § = 0, allowing a test of hypothesis H; . I include also three models to illustrate
the consequences of relying on a single measure of water quality, in this case one that is
widely used by the U.S. Environmental Protection Agency:
Model C;: Model A, but replacing all physical water quality measures
with the single water quality ladder index.
Model C;: Model A;, but replacing all physical water quality measures
with a single water quality ladder index.
Model C;: Model A, with the physical water quality attributes constrained
to have no impact (i.e., =0 in equation 3).
Note that it is the comparison of models A; and Cj that provides the basis for testing

hypothesis H, (i.c., that only the perceptions index matters).

B. Estimation Result

The resulting parameter estimates are presented in two Tables, 8a and 8b. Table 8a
lists parameter estimates for socio-demographic variables and mean and dispersion
parameters for random coefficients for lake amenities data. Most of the coefficients are
significant at the 5 percent level, except for inorganic suspended solids for Model B; and B,
and some of the socio-demographic data including age, age square and school dummy

variables. The age variable is not significant for Model A,, By, B, and C;, while the age
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square variable is not significant for Model A,. The school variable is insignificant in Model
A, but significant in the others. Note that the socio-demographic data are included in the
conditional indirect utility for the stay-at-home option. Therefore, larger households are all
more likely to take a trip to a lake. Age has a convex relationship with the stay-at-hofne
option and therefore has a concave relationship with trips. For Model C; and Cs, the peak
occurs at about age 48, which is consistent with the estimate of larger households taking
more trips, as at this age the household is more likely to include children. Higher-educated
individuals appear to be more likely to stay-at-home, with corresponding positive coefficients
on the school variable. The price coefficient is negative as expected and virtually identical in
all seven models.

Turning to the site amenities, all of the parameters are of the expected sign. As the
size of a lake increases, has a cement boat ramp, gains handicap facilities, or is adjacent to a
state park, the average number of visits to the site increases. Notice, however, the large
dispersion estimates. For example, in Model A, the dispersion on the size of the lake
indicates almost all people prefer bigger lakes. The large dispersion on the “wake” dummy
variable seems particularly appropriate given the potentially conflicting interests of anglers
and recreational boaters. Anglers would possibly prefer “no wake” lakes, while recreational
boaters would obviously prefer lakes that allow wakes. It seems the population is roughly
split, with 62 percent preferring a lake that allows wakes and 38 percent preferring a “no
wake” lake. Lastly, the mean of ¢, the trip dummy variable, is negative, indicating that on
average the respondents receive higher utility from the stay-at-home option, which is
expected considering the average number of trips is 7 out of a possible 52 choice occasions.

The physical water qualities and mean perception coefficients are reported in Table

8b. For four models, the effect of Secchi depth is positive, while inorganic (volatile)
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suspended solid have a negative impact, indicating that respondents strongly value water
clarity. However, the coefficients on chlorophyll and volatile suspended solids are positive,
suggesting that on average respondents do not mind some “greenish” water. The negative
coefficient on total phosphorus, the most likely principal limiting nutrient, indicates that
higher algae growth leads to fewer recreational trips. Total nitrogen having a positive
coefficient is consistent with expectations given the negative sign on total phosphorus. With
such large amounts of phosphorus in the water, more nitrogen can actually be beneficial by
allowing a more normal phosphorus-to-nitrogen ratio. Two other forms of nitrogen,
NO;+NO; and NH3+NHy, are negative. Continuing with the additional measures in Model B,
alkalinity has a positive coefficient, consistent with alkalinity’s ability to both act as a buffer
on how much acidification the water can wit};stand before deteriorating and as a source of
carbon, keeping harmful phytoplankton from dominating under low CO; stress. Since all of
the lakes in the sémple are acidic (i.e., pH greater than seven), a positive coefficient for
alkalinity is expected. The positive coefficient on silicon is also consistent since silicon is
important for the growth of diatoms, which in turn are a preferred food source for aquatic
organisms. pH is entered quadratically, reflecting the fact that low or high pH levels are signs
of poor water quality. However, as mentioned, in our sample of lakes all of the pH values are
normal or high. The coefficients for pH show a convex relationship (the minimum is reached
at a pH of 8.3) to trips, indicating that as the pH level rises above 8.3, trips are predicted to
increase. This is the opposite of what I expected.

The water quality perception has a positive and statistically significant impact in both
models A, and B,. Entering the mean perception to models A; and B; does not change the
signs or general size of the physical water quality measures. The coefficients on water quality

perceptions indicate that lakes which have higher mean perception are more likely to be
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places where individuals want to visit, as expected. Clearly, the hypothesis H; that the
physical water quality measures above capture the full impact of water quality on the
household’s trip patterns can be rejected. Water quality perceptions, as captured by Q;, also

significantly affect where people choose to recreate. However, it is also clear that the

perceptions index is an incomplete measure of how water quality affects household behavior.

Comparing models A, or By to model C;, we clearly reject the restriction =0 (H, )12

VI. Welfare Estimation

The results of the previous section indicate that water quality impacts individual
recreation decisions in a complex fashion and that individual perception measures may be
useful in explaining such site choice decisions. The question then is whether excluding such
perceptions information significantly biases the estimated welfare implications of water
quality improvements. To simplify the discussion, I focus my attention on the results of
model C; and C, in which the physical water quality measures are summarized using the
water quality ladder index used by the USEPA, which ranges from 1 to 10. The problem
from a policy point of view is that a proposed water quality improvement may move a lake
from “boatable” (with an index of 3.5) to “swimmable” (with an index of 7) based on the
physical attributes of the lake, but not be perceived by individuals as being as big of a
change, perhaps moving the lake from “boatable” to only “fishable” (with an index of 5).
Welfare calculations based only on the direct physical measures may miss how individuals

perceive such water quality changes.?® In some sense, the model employing only the water

' The corresponding likelihood ratio test statistics is 2% =82 (p-value < 0.001) for model A whereas y2 =50
(p-value < 0.001) for model B.

% The bias could, of course, move in the other directions, with households perceiving bigger changes than
actually occur based on the physical water quality measures.
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quality index (Model C,) is from the physical scientist’s (and typically the policymaker’s)
perspective. Model C,, on the other hand, by incorporating individual perceptions data, takes
into account how individuals translate the physical water quality measures into the attributes
of the lake that matter to them directly.

Three water quality improvement scenarios, measured by a water quality index and/or
water quality perception, are considered with the results from Model C, and C; used for all
the scenarios. The first scenario improves all 130 lakes to the water quality of West Okoboji
Lake, the clearest, least impacted lake in the state. Table 9 compares the water qualit};
perception and water quality index of West Okoboji Lake with the average of the other 130
lakes. Both as measured by the water quality index and the mean pérceptions variable, West
Okoboji represénts a substantial improvement over the other 130 lakes in the state. Both the
water quality index and water quality perception are second highest (9.08 and 6.81
respectively) among 130 lakes. The second scenario is a less ambitious, more realistic, plan
of improving nine lakes to the water quality of West Okoboji Lake (see Table 9 for
~ comparison). The state is divided into nine zones with one lake in each zone being
considered for improvement, allowing every lowan to be within a couple of hours of a lake
with superior water quality. The nine lakes were chosen based on recommendations by the
Iowa Department of Natural Resources as possible candidates for a clean-up project. The last
scenario is also a policy-oriented improvement. Currently of the 131 lakes, 65 are officially
listed on the EPA’s impaired water list. TMDLs are being developed for these lakes and by
2009 plans must be in place to improve the water quality at these lakes enough to remove
them from the list. Therefore, in this third scenario, the 65 impaired lakes would be improved
to the median mean water quality perception and/or water quality index level of the 66 non-

impaired lakes. Table 10 compares the median values for the non-impaired lakes to the
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averages of the impaired lakes. Notice that there is not much of a movement in either water
quality measure under this last scenario.

Based on the test results in Section V and the random parameter vector estimates,
6, =(7,,;)', the conditional compensating variation associated with a change in water,
water quality perceptions from Qto Q' and physical water quality from Z to Z’ for

individual i on choice occasion ¢is given by

CV,(6) = %{ln[z exp(V, 10,250, ~ In[y" CXP(V,;,[Q,Z;@])]} : )

which is the compensating variation for the standard logit model. The unconditional

compensating variation does not have a closed form, but it can be simulated by

CV,(0) = %Z%{m{z exp(V,.,.,[Q',Z';e,-'m—1n[g exp(, [0, 730 1)1}, ®)
where R is the number of draws and r represents a particular draw from its distribution. The
simulation process involves drawing values of 8, = (y,, «;)" and then calculating the resulting
compensating variation for each vector of draws, and finally averaging over the results for

many draws. Following Von Haefen (2003), 2,500 draws were used in the simulation.

The resulting welfare estimates are provided in Table 11, along with the predicted
number of trips under all scenarios. Improving all 130 lakes to both the water quality
perceptions and water quality index of West Okoboji Lake (using Model C,) leads to 17
percent increase in average trips. In contrast, improving to the water quality index of West
Okoboji Lakes alone (using Model C;) leads to only a 3 percent increase in average trips.

The annual compensating variation (CV) estimate when ignoring water quality perceptions
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(Model C,) is $12.39, versus a CV of $68.35 when considering both water quality index and
perceptions (Model C;) for every Iowa household. Aggregating to the annual value for all
Towans simply involves multiplying by the number of households in Iowa, which is
1,153,205.%' Thus, ignoring the perception informétion leads to a substantially smaller
estimate in the overall impact of the first policy scenario.

Under the second scenaﬁo, the annual compensating variation per household estimate
is $0.90 when water quality improvement measured by water quality index (Model C;) and
$7.87 when quality improvement measured by both the water quality ladder and perception
(Model C,). This estimate is 7 percent and 11 percent of the values obtained in scenario one;
i.e., in which all lakes were improved. As with the first scenario, the welfare estimates are
substantially smaller when individual perceptions information is ignored.

The third scenario is also valued considerably lower than the first water quality
improvement scenario. The estimated compensating variation per lowa household is $3.06
when only water quality index is used (Model C,) and $6.23 when both measures are used
(Model C,). Also, the predicted trips only increase 1.24 percent for water quality index
improvement (Model C;) and 1.90 percent for both water quality perception and water
quality ladder index improvements (Model C,).

As discussed above, there is a big margin between compensating variations, one
ignoring water quality perceptions information and the other including it. There is also a
reduction in terms of predicted trip change, 28, 15, and 14 percent for the three scenarios,
respectively. Further, the evidence that compensating variation calculated using both water

quality measures is bigger than that calculated using water quality index suggests that agent’s

2! Number of Towa households as reported by Survey Sampling, Inc., 2003.
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cost-benefit analysis of improving water quality ignoring lake visitor’s perception could be

biased. In the current setting, the bias is downward.

VII. Conclusion

Individual day trip data collected from the Iowa Lake Survey 2003 shows that
subjective quality assessment may influence individual's site choice decision. In addition,
individuals appear to have somewhat different views of water quality than is captured by the
objective water quality ladder measures used by the EPA and/or scientist. Correlation
coefficients show that this disparity is different for two recreation groups: water body contact
group and non-water body contact group. The fact that water quality perceptions do not
perfectly align with eirther the physical measures or the corresponding water quality index
suggests that such perception may provide useful additional information in explaining
individual behavior.

Repeated mixed logit model estimation result indicates that individuals’ site choice
decisions depend significantly on physical water quality, the water quality index and water
quality perception. As was the case in Adamowitcz et al. (1997), the models with perceptions
included outperform the models without such perception information.

Compensating variation estimates in the last section of the chapter illustrate the
importance of incorporating perceptions in terms of both estimating the welfare and trip
impacts of proposed policy initiatives. Annual compensating variation ignoring individual’s
water quality perceptions is reduced by as much 90% of what is estimated using water
quality perceptions. In terms of the annual predicted trips, ignoring individual’s water quality
perceptions reduces the change in predicted trips by as much as 28%. Therefore, in order to

get accurate welfare measure, quality perceptions should be considered.
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In this chapter, mean water quality assessment of a lake is used in the same way catch
rate data has traditionally been used recreation demand analysis in part, because the water
quality assessment is endogenous. In addition, individual’s water quality assessments for all
the 131 lakes are not available because survey respondents only reported the water quality
assessments over lakes they were familiar with. However, as described in the previous
section, water quality perception of each individual is linked with the physical water quality
measures through individual’s activities at the lakes where they visited. One refinement to
the current analysis would be to replace the mean water quality assessment with a fitted
assessment, derived, for example, from a regression of water quality perceptions on
individual’s socio-demographic variables, physical water quality measures, and the
characteristics of the lakes. Although the variation of the water quality perceptions is small,
making use of the predicted water quality assessments over the 131 lakes (i.e., in an
instrumental variable approach) would avoid the endogeneity problem and would potentially

improve both the explanatory power of the recreation demand and welfare estimation.
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n order to make sound

decisions concerning the future of
lowa lakes, it is important to understand
how the lakes are used, as well as what
factors influence your selection of lakes
to visit. The answers you give to the
questions in this survey are very
important. Even if you have not visited
any lakes in Iowa, please complete and
return the questionnaire. It is critical w
understand the characteristics and views
of both those who use and those who do

not use the lakes.
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n this first section, we would like to find out which of the lakes on the enclosed
map you visited and what vou did there.

1. Please indicate how ofien you or other merabers of your household visited each of the following lakes in
the current vear. If you have not visited any lakes in Towa this vear please check this box.
W1 have not visited any lakes in lowa this vear,
tn addition to recording the number of visiss you took w each lake, i sny, please 1odicate which of
the lakes vou considered visiting this year by marking the box in the second columm
We are very interested in your view of the water quality of lowa's lakes. One way of thinking abowt
water quality is to use a ladder like the one shown 1o the right of the list of lakes, The 1op of the
water quality ladder stands for the best possible quality of water, while the bouom ol the ladder
staruds for the worst, On the ladder von can see the differery levels of water quality.
For example: the fowest level is so polhuted thar it has ol raw sewage, arelfor other things in i1 like
trash: it hag ahinost no plang or anfmal life, smells bad. and conwer with it is dangerous 1o buman
health, Water quality that is “boatable™ would not harm you i vou happened 1o [all imeo it for 3 short
time while boating or sailing. Wawr quality that s “lishable”™ s a bigher level of quality than
“hoatable.” Although some kinds of fish can live in boatable water, it is only when water & "lishable”
that game fish like bass can live in it Finally, “swimsmable”™ water is of a high enough quality thar it is
safe 1o swim in and ingest in small amoums.
For any lake with which vou are familiar please indicate vour assessment of the level of water
quality as teed with thas lake by assigning a number bevween O and 10 that is based on the wawr
quality ladder pictured. Familiar lakes include both those that you have vigived this vear as well as
those you have visited in the recent past.

[ Cheekif ‘  Water Quality Ladder
you have ;\un‘ﬂfer nf Bt posaile
ever visHs % wmer quabily
considered (January-December} Water
visiting this n2003 0 Quality
Name of Lake (Connty) lake Asse '
PR Leripst B
| Arrowhead Lake (§ A LA
CArrowhead Pond (Saez CFL trips) o
L E_ {rips) #
® _lripsl o8

Big Spirir Lak

L #__ Cuips)

Le L Lrips)

P ¥ {1rips)

# L1rips )

Sinck Haowk Lake (7

f Briggs Woods Lake (Hamilton) | & {trips}

ek wadiy

‘u (rips) |
' #

©) Lo lirips)

v T, {{ﬂi}:{}
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Cheek ff

Water Huality Ladder

you have Nummber of Best pomsdie.
: ever vigits
considered {(January-December) Water
visiting this in 2003 Guality
Name of Lake iy} i lake  Singleday | Overnight | Assessment Hain o
[ Browns Lake { Woodbury) lm_ Gnpsy T tuips) o®
Brushy Creek Lake (Webstir) & . Atripsd 1 ¥ Urips) # [
. er Lake (Pots amie) Ao AIOpS] | # Lrips) LS s
Casey Lake (aka Hickory Hills) B fhe
i . tae ass
L (Tams) o 8 lwrnsd 2 Gips) # embe et
enter Lake (Dackinson # . Atrips} rrips}

Cenual Park Lake {Jones)

#___ {urips

i {irips)

# (trips)

| Clear Lake (Corro Govdo)

old Springs La

#___ {urips)

£ o dirps)

um Bamperoiiy

- Crawford Ceoel Inmpoundhmens Oday

o HEAEET

# o

& | Warsl poswibie

Lake (Hancock)

fitt Lake (Madison}

{trips}

waver guslity

&

A &

(trips)

: DeSoto Bend Lak

cowLirips)

Pamond Lake (Poweshich?

LoE | aripsd

# {urips) e

3\

i # {1rips)

ips)

C#_ {ripsy |

= (reips)

RALEIt )

@ Grips)

Five Island Lake (Palo Allo}

ogle Lake (Ringgold)

George Wyth Lake (Black Hawk!

#_ _ Lirips)

Lorips)

ke (Black Hhawk

#  liriosy |

CGree Castle Lake Ovarshally

Green Vatley Lake {Uniowd

reenfield Lake (Adair]

¢ Hannen Lake (Benton)
| Hawthors Lake (aka Barnes City)
(Mahaskal

Liimms?

L ST

Hickory Grove Lake (Borv)

(tripsy

Hooper Area Pond (Warren!

e birips )

Indian Lake (Van Buren)

#___ lirips)

L# _ {uips)

£ e

$

harn Lake {Emmet

k23

(irips)

- Kenp Park Lake (Jolmsoy)

4 Flowa bakes Survey
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; ever
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Checkif
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Number of
visits
(Jarary-December)
in 2003

i visiting this
! ke

Stngle-day

Overnight

" Water (Quality Ladder
Hezs possible

iName of Lake (County)
i Lacey-Keosaugua Park Lake

piuren?

ripst

dee Ahguabi (Warren)

# i)

“Lake Anits (Cass)

# o Aripsd

%Ls&ke Cornelia (Wright} # - Liips)
Lake Darling {Washington) # L)

Lake Geode (Henryd

L {srips)

Lake Hendricks (Howard) & liripsk
ke loaria (Adaris? #  Lrips)

iLake of the Fills (Scon) 2 lripsy L& LA )
Lake tows (fowad #____{tipsy  #__ lwmips) L Worst gusuiie
; sipter goahiy
Lake Keomuh (Mahaska) z . Liripss L

Lake Manaws (Po e} # o dudpsy (# (eips) o o#

Lake MoBride (Johnson) i # . trps) s -

Lake Mever {Winneshiek) £ o liipsd [

Lake Mismi (Monroed

B e LTI

Lake Mim stiva {Dickinson )

# . {ips) | & lsripsy

Lake Orient (AC

Atrips)

{Lake Pabioja (Ly

{erips)

Lake Smith {Kossuth}

rips?

Lake Sugenwa (Van Buren)

Lake of Three Fives (Taylors

‘Lake Wapello (Davis}

[irips)

ki

#_ . lirips)

P oH (trips)

it

fede River {Decatar?

Littde Spirit Lake (D0

1tle Sioun Park Lake (Woodbury)

u  liripg)

Littte Wall Lake (Mamilton)

; # . (uips)

sdphon

Trips)

e A ATES S

Jitrips!
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 Water Quality Ladder

Check if P
you have Number of w;;‘f‘::&w
ever vigits

considercd {Jannary-Decenbec) Water
; | visiting this i 2003 s AQuadity Sobnte drci
‘Name of Lake {County) lake Single-duy | Overnight | Assessment )
- Mevers Lake (Black Hawk} poE  Luips) & Grips) L
¢l Creek {Laked (O Brien) % f{uipsy ¥ fmips) | o Sate for
; Iy
i Mitchell Lake (Black Hawik) B ALripsl (#nipsd

B s
Yag Bass

f o g ini st

soorbead Lake {Ids) ~ o lwips 4 Lwps) ¢ &
| Mormon Trail Lake (Adair) & Stips) 18 (rips) [ ——

Nelson Park Lake (Crawlord) #_ . twips) (& (irips) #_

Ming Fagles Lake (Decatur} O } s

North Twin Lake (Calhoun) A A lrips)

e ler bowing

Oldham Lake (Monona}

L& (rips)

Otter Creek Lake (Tama)

CE (wrips)

® _ {urips)

Gasgeronzly
pied

Pierce Creek Lake (Page)

Ottwmiwa Lagoon (Wapello

La (erips)

| Harst possidde
L1 water gualdy

E o Auipsd

# Lrrips)

| Pleasamt Creek Lake {linn 1 g Y& {ips)
Polimiller Park Luke (Lee) & (rips) P& (1rips)

_ Prairie Rose Lake (Shelby) (trips) 1 & {rips
. Rathbun Lake {(Appancose) #  {ips) D& {wrips)

- Red Haw Lake (Lucas)

F o birips]

B o bUips

Red Rock Lake (Marion}

- Roberts Creek Lake (Mavion)

. Rock Creek Lake (Jusper)
o
Savlorville Lake {Poll)

gers Park Lake (Bentony

lver Lake {Delaware)

Silver Lake {Dickinson)

x5 (erips) |

| Sibver Lake (Pala Alod

#, . fipst

i Silver Lake (Worth) #__. {irips}
: Ship Bhuft Lake {Deoarur) LA Sries)
South Prairie Lake (Black Hawk) & lwips)

Spring Lake (Greene? L ® . itrips)

wingbrook Lake {Guthric)

Lirips)

Srorm Lake including

S E Crips)

L®  tuips)

Litile Storm Lake {Buena Vis e .
| Swan Lake (Carrolld &

Thayer Lake {Unigug Cow L dringd [
| Three Mile Lake (Union) 7 (trips) #
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Water Quality Ladder
Check ; P '
you have | Number of wathr quaty
ever visits
| considercd (Jannary-Deccmber) ‘Water
5 visitiog this o im2003 © Quality Safn o drisk
Name of Like (County) take _ Siogle-day  Ow night = Assessment :
Tromnbell Lake (Clay} % . lrips) a2
Tutrle Lake (Ermet) 7o L UIDSY
Twelve Mile Creek Lake {Union} % . lripsg

Undon Grove Lake (Tama)

t o AUEPRY £ Auipey

Unper Gar Lake {Dickinson)

o vanhis

Upper Pinelake (Harding

#*
a_ Aripsy & (irips)
#

o tripsl # (rips)

Viking Lake Montromery
£

Volga Lake (Fayeite)

West Okoholt Lak

s {Ddcki o

# (rrips) (¥
#

£ . Lipsl L LErips}

West Osceols (Clagke)

£ (wipst & (uripe) N o otiet

White Oak Lake (Mahaske)

# {trips) L # LTTiges }
ovonss TR i R

Willismson Pond (bucss)

£ fuips) #

illow Lake (Marvison}

Atrips) & (rrips}

Wilson Park Lake {Tavlor)

# rripsy  # Lrrips) #

Windmill Lake (Taylor) . Lerdpsy 1w rips) s
}’cﬁ{mf Stncke Park Lake (Crawlord: #_lmipsy & {uips) ¥ ,
{Other Lakes i lowa #  (wripsy & {trips)

2. Please indicate how often vou or other members of vour household visited lakes or rivers in cach of
the following lochuons this vear,

Overnight

* Lakes i Minois

; S%@bda; T Over

[ Lakes in Minnesot

<ippd River

Cithier Lakes and Riy

3 What s

Check ail that apply.

Avities do you or

QBoating et skifng
WUamping Wsail

UFishing  OCanueing

ing

Ofuonung  UPicnicking

members of your houschold wypically participate in during vour lake visits?

UNature Appreciationswildlife viewing
ASnowmaobiling and other winter recrearion
WSwimpming and beach use

Gther
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n the following sections we will ask you some questions about potential changes to the

water quality of Rathbun Lake located in Appanocose County. First, however, we will give
you some information on the current condition of the lake. Please read this information
carefully before answering the questions that follow.

Rathbun Lake’s Current Condition
The quality of a lake can be deseribed in many
ways. One measure of water quality is the
clarity of the lake water. Water clarity i
usually described in terms of how far down

into the water an )
abject remains * Current conditions of Rathbun Lake
visible. The clarity of @ be summarized a5

Rathbun Lake is Wates Clarity:  Objeckidistinghishable
216 el e wiater

currently between 2 ;
. . Algae blogins: 1o 3 per
w0 4 feet, This means o " Pt year

that objects are Water color:. Bl 10 greenish brown :
visible down o Waterodor  mildn netasionally stong !
\ .
about 2 o + feet Bacteria: occasioipl shoitzerm Suthbur Lak

I ey advisaciis possible un Lake
under the surface of Y Aopimoase Coroty

the water. Fish: o crsspie And watieye

2 mites

. Figure 1. Current conditions of Rathbun Lake
Another measure of

water quality is the amount of nutrients and other contaminants contained in the water. Waier
degradation can result from a nuwmber of sources, including wrban ronefl, lenilizers used in agriculture,
mowor vehicles, and others. Currentdy nuiriems contribute 10 the occurrence of algae blooms in the lake,
usually 1w 3 times per vear. Under some circumstances these blooms can be a health concern, causing
skin rashes and allergic reactions. While Rathbun Lake is currently not regularly monitored. lakes with
water quality measurements similar to those of Rathbun Lake had “Swimming is Not Recommended”
signs posted by the Towa Deparument of Namral Resources for anywhere from 6 1o 8 weeks during a
typical summer.

The overall quality of the water can affect other conditions of the lake. Poor water quality can result in an
undesirable color and odor o the lake water. Carrernby, the color of Rathbun Lake varies between blue and

greenish brown. The water usually has a mild 1o oceasionally strong odor that many describe as “fishy”

Finally, the quality of the water allects the variety and quantity of fish in the lake. Rathbun Lake is a
poputar fishing lake for crappic and walleye, Cateh rates for crappies are typically very good {(about
120,000 annually) while walleve caiches are more variable, bt Rathbun Lake is the best walleve fishery
in southern fowa (about 2,000 annually). Large mouth bass and bluegil] are not imporiant sportlish
species at Rathbun Lake.

4. During the course of the next year (2004}, how many trips do you expect to wake to Rathbun Lake?

trips in 2004,

& 7 lowa Lahkes Survey—Rathbun Lake
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n the next question, we will be asking you how you wonld veie on a special

ballot regarding the water guality of Rathbun Lake. While there is currently no such
ballot initiative, we would like you to respond as if you were actually voting on the
initiative and as if this were the only alternative available for improving water quality
in the lake. (In particular, assume that no state action will be undertaken unless the
referendum passes.)

When vou think about your answer, it 18
imporiant 1o keep in mind that people may

indicate that they . : : .
would be willing o TProved sondions of Rathbun Lake.
QUG DE WARINE 10 can besummarkeed 85 ‘
pay more monty water Clarity:  cbipets ditioguisable .
when payment is STt war water
hypothetcal then Algae bioomy - Rately Hiors s | pe year
e oy T Prae
when they are water color © geeentoblug =
;mmedmm}v Water odor asasliy sk
expected 0 pav
) Bactaria: rare swinyadisories
may be easy for ot yhars nene Rathbun Like
i Ao Lourty
people o say that Fesin: strany willeye sad
they suppott a . i

project when they Figure 2. Coenditions of Rathbun Lake following an improvement

are 1ol sure they

will ever have 10 pay any money based on their response. However, if the proposed pavinents are real and
immediate, people may be more inclived to think about ather opions and what things ey would have w
give up o make this payment. So i answering the lollowing questions, please keep in mind both the
benelits of the water quality improvement and the Impact that passage of such a referendum would have on

vour fnances. In other words, please answer as i this were a real referendum.

Suppose that nvessments condd be made w aceally mprove the quality of Rathbun Lake. These tovese
ments might inclode dredging. building protec

tion strips along the edge of the lake w reduce runoff frons the
surrounding watershed or other structral changes 1o the lake and watershed. These changes would

improve the fke over the pext 5 vears w the conditions described in Figure 2,

5. Woukd you vote “ves” on a referenduim w improve the water gquality in Rathbun Lake w0 the level
deseribed here? The proposed project would cost you $#CV BID» {pavable in five $-Bid div 3x
installments over a five viar period.)

Une Uves

6. How sure are vou of this answer?

i {not sure ar afly 2 3 4 5 {eeraing

fowit Lakes SurveyeRathbun Lake 79
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7. Yo help us better undersiand vour answer, please iwdicate the single most imporiant reason for your
response 1o the preceding question:
Uin general, the project is not a good wse of my money
Lin general, the project is a good use of my money
W The project is not realistic or unclesr
U'the costs of the project should be paid for by those damaging the lake, not by me
O aiready contribute 1o enviremmental causes as nouch as 1 ean afford
UNo one should have the right to damage the lake in the first place
O Other

8 How many rips o Rathbun Lake wouhld vou make next vear {2004) o the water quality a1 Rathbun
Lake was improved by the amount described in Figure 27
trips in 2004,

anformation on you and other members of your houschold will help us better

understand how household characteristics affect an individual’s use of lowa lakes and
attitudes towards changes in them. It will also help us (o determine how representative
our sample is of the state of Jowa. All of your answers are strictly confidential. The
information will only be used o report comparisons among groups of people. We will
never identify individuals or households with their responses. Please be as complete in
your answers as possible. Thank you.

9. What i vour age?

Clonder 18 e - 35 W5g - 59 76 -
18- 25 I35 - 49 a0 - 75

10, Are vou
Umale WHemale

L What 15 the highest level of schooling that your have completed? (Please cheek enly oned

WSome high school or less WSome college or radesvocuiional school WAdvanced degree
UHigh school graduate UCollege praduate

L2 How many adubts Uneluding vourself? hive o vour household?

13 How many children Hve in your household {18 or under)

P4 What is vour carrent emsplovment status?
Qfull tme - Opan vme Usindert Qunemploved  Uretired

15, 1 you ate currently emploved, how mainy hours 2 week do vou typically work?

1 f lowa Lakes Survey
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16. 1 you are somenthy emploved. do vou have e oprion of working additonal hours o increase your
1oial income?

Uno Qyes—il so, what would your hourly wage be? % per hour

—t

I vou answered “no” to question 16, and you could have the option of working more or less hours,
which would you prefer?

hwork more hours Chwork the same number of hours Uhwierk fower hours

18, What is vour total household income (before 1axes) tor 20037

L Crder $10.8080 L1825.000.829, 554 L1850, 060.855 505 L8195 00-8140,900
Ostoo00-3i4.000  I4930.000-844,509 O 460,000-874 9549 QOver $150.000

C3515.000-819,099 19,4909 T 875000859 999

]
]

LI £20.000.824,

£18100,000-81¢

GO S OO B4,

19. Do vou own a boat? Lyes.  WUno
inally, we would appreciate a little more information on your reaction to

this survey.

20. How Hikely do vou ihink it is that the resudis of survevs such as this one will affect decisions abow
water guality in lowa lakes?

I {no effect ar ally 2 3 4 5 (deflinite cllects;

21, 1 a water quatity project such as the otie deseribed on page § were inlugwed but laer iformanion
suggested that it would be ineffecuve, how Hkel

¢ is w0 that the project would be scrapped?

o
3

L {impossible 2 5 (oertainly}

[
Yo

C @ project such as the one desoribed on page 9 failed 10 puss i a referendum, what do vou think i
Ifap uch as il deseribed on page 9 fadled 10 pa ferendum, what do vou think
the lkelihood thar another, similar project wonld be considered within the nest few vears?

¥

1 {impossibler 4 crainly}

33, What do vou think is the likelihood that you will get additional information sbow the effecuveness of
water quality improvement projects in the next fow vears?

1 {impossibley 2 3 4

ertainby}

Phank you for vour partivipation in this survey, After completion. survevs showld bie retirned to;
Cagherine Kiing
S8 Heandy Hall, Maslsiap «Mailstop-
Lowa Sty

Amex, 1A

fowa Lakes Survey——Hathbun Lake /1]
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Appendix B. Figure and Tables

Water Quality Ladder

Figure 1. Water Quality Ladder
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Table 1. Socio-Demographics Summary Statistics®

Mean Std. Dev. Minimum Maximum
Total Day Trips 6.97 10.19 0 52
Income $55,697 $36,444 $7,500 $200,000
Male 0.67 0.46 0 1
Age 54.21 15.89 15 82
School 0.67 0.46 0 1
Household size 2.54 1.31 1 21
? Sample Size=5,052 individuals
Table 2. Summary Statistics of Water Quality (WQ) Perception®
Mean Std. Dev. Minimum Maximum
Median WQ Perception 5.81 0.66 4.00 7.00
Mean WQ Perception 5.75 0.51 4.11 6.81
Standard deviation of WQ Perception 1.66 0.28 1.06 2.42
Day Trips per capita 0.36 0.50 0.02 4.26

* Sample Size = 131 Lakes




Table 3. Water Quality Perception (WQP) and Total Day trip per Capita

93

County Impaired Day-trip® WQP® N°¢
Best 20 Water Quality Perception Lakes and Day Trips |
West Okoboji Lake Dickinson 0 1.46 6.81 571
Dale Maffitt Reservoir Madison 0 0.11 6.68 93
Fogle Lake Ringgold 0 0.09 6.67 12
Three Mile Lake Union 0 1.37 6.67 156
Pleasant Creek Lake Linn 0 0.39 6.61 204
Poll Miller Park Lake Lee 0 0.18 6.59 27
Rathbun Reservoir Appanoose 0 4.26 6.54 387
Lake Wapello Davis 0 0.48 6.46 106
Big Spirit Lake Dickinson 0 0.92 6.44 369
Lake Meyer Winneshiek 1 0.71 6.43 473
Mill Creek Lake O'Brien 0 0.12 6.42 31
Twelve Mile Creek Lake Union 0 0.83 6.37 110
Lake Keomah Mabhaska 1 0.11 6.37 90
Little River Watershed Lake  Decatur 0 0.49 6.36 45
Lake Iowa Iowa 0 0.17 6.34 86
Lake Smith Kossuth 1 0.30 6.33 88
Kent Park Lake Johnson 0 0.20 6.32 165
Lake Icaria Adams 1 1.12 6.31 101
Lake Ahquabi Warren 0 0.24 6.31 200
Greenfield Lake Adair 0 0.16 6.26 34
Average 0.2 0.69 6.46 167

* Day Trip Per Capita

® Mean Water Quality Perception
¢ Number of respondents to assess the lake
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County Impaired Day trip® WQP" N°¢
Worst 20 Water Quality Perception Lakes and Day Trips
George Wyth Lake Black Hawk 0 0.69 5.25 224
Mariposa Lake Jasper 1 0.04 5.24 42
Williamson Pond Lucas 1 0.05 5.22 9
Briggs Woods Lake Hamilton 0 0.31 5.18 88
Tuttle Lake Emmet 1 0.08 5.14 22
Ingham Lake Emmet I 0.10 5.07 45
Lake Macbride - Johnson 1 1.20 5.06 160
Mitchell Lake Black Hawk 0 0.05 5.04 26
Meyers Lake Black Hawk 0 0.12 5.00 49
Lower Gar Lake Dickinson 1 0.20 4.97 99
Swan Lake Carroll 1 0.54 4,96 108
Lake Darling Washington 1 0.43 4.95 148
Little Wall Lake Hamilton 1 0.25 4.89 111
Silver Lake (Palo Alto) Palo Alto 1 0.05 4.83 18
Arbor Lake Poweshiek 1 0.08 4.70 44
Silver Lake (Delaware) Delaware 1 0.07 4.69 39
Trumbull Lake Clay 1 0.05 4.59 22
Carter Lake Pottawattamie 1 0.39 4.53 98
Manteno Park Pond Shelby 1 0.04 4.30 10
Ottumwa Central Park Ponds Wapello 1 0.59 4.11 89
Average 0.8 0.27 4.89 73
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Table 4. Water Quality Variables and 2003 Summary Statistics

Mean Std. Dev Min Max
Secchi Depth (m) 1.44 1.12 0.17 8.10
Chlorophyll (ug/1) 20.12 7.71 2.09 37.62
Nitrogen (ug/1) 294.64 168.69 52.04 1278.84
Nitrates (mg/]) 1.54 3.13 0.02 14.79
Total Nitrogen (mg/1) 2.72 3.19 0.49 15.66
Total Phosphorus (ug/1) 93.93 65.62 16.87 383.77
Silicon (mg/1) 4.01 2.49 0.88 11.22
pH 8.48 0.27 7.95 9.49
Alkalinity (mg/1) 107.90 33.64 56.33 201.00
Inorganic SS (mg/1) 8.08 7.27 0.60 49.54
Volatile SS (mg/1) 8.40 6.38 0.85 38.55
Cyanobacteria (mg/1) 293.63 827.09 0.01 7178.13

Total Bacteria (mg/1) 302.60 829.14 3.99 7178.60




Table 5. Correlation Coefficient of Quality Assessment with Several Physical Measures
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Variables All Sample (5052) Water Contact Group (3619) Non'wate(rlggg)ta"t Group

correlation statistic  pvalue | correlation statistic pvalue | correlation statistic pvalue
Day Trip per Capita 0.252 2963  0.004 0.257 3.019  0.003 0.047 0.536  0.593
Secchi Depth 0.351 4260 <0.001 0.365 4455 <0.001 0.132  1.517 0.132
Chlorophyll -0.072 -0.823  0.412 -0.087  -0.987  0.325 0.009 0.106 00916
Total Phosphorus -0.330  -3.977 <0.001 -0.331  -3.987 <0.001 -0.209 -2.424  0.017
Total Nitrogen -0.191 -2.216  0.028 -0.196  -2.275  0.025 -0.136  -1.564  0.120
Nitrogen -0.352 -4.268 <0.001 -0.362  -4.415 <0.001 -0.241  -2.817  0.006
Nitrates -0.029 -0.327 0.744 -0.031 -0.351 0.726 -0.041 -0.465 0.643
pH <0.001 0.002  0.998 -0.006  -0.065  0.949 -0.001  -0.013  0.990
Alkalinity -0.145 -1.661  0.099 - -0.145  -1.664  0.099 -0.146  -1.675  0.096
Silica -0.307 -3.664 <0.001 -0.311 -3.720 <0.001 -0.184  -2.123 0.036
ISS -0.334  -4.025 <0.001 -0.338 -4.081 <0.001 -0.166 -1917  0.057
VSS -0.321 -3.844 <0.001 -0.336  -4.054 <0.001 -0.082 -0.937  0.350
TSS -0.339 -4.095 <0.001 -0.349 4235 <0.001 -0.129  -1.483  0.141
CTSI_SEC -0.357 -4.344 <0.001 -0.369  -4.516 <0.001 -0.139 -1.595  0.113
CTSI_Chla -0.065 -0.743  0.459 -0.079  -0.905  0.367 0.009  0.100 0.921
CTSL_TP -0.306  -3.654 <0.001 -0.307  -3.663 <0.001 -0.196  -2.267  0.025
WQI 0.214 2.484 0.014 0.218 2541  0.012 0.144  1.654  0.101
BOAT RAMP 0.257 3.024  0.003 0.253 2973  0.004 0.138 1.585 0.115
Wake 0.015 0.169  0.866 0.017 0.189  0.851 -0.058 -0.663  0.508
Facilities 0.151 1.732  0.086 0.158 1.821  0.071 0.055 0.626  0.533
State Park 0.143 1.640  0.103 0.145 1.662  0.099 0.099 1.127  0.262
Log (Acreage Use) 0.135 1.542  0.125 0.118 1.354 0.178 0.111 1272  0.206
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Table 6. Summary Statistics for Lake Site Characteristics

Mean Std. Dev Min Max
Acres 662.41 2105.41 10 19,000
Ramp 0.86 0.35 0 1
Wake 0.67 0.47 0 1
State Park 0.39 0.49 0 1
Handicap Facility 0.38 0.49 0 1
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Table 7. Regression of Mean Perceptions on Physical Measures and Lake Characteristics

Estimate Std. Err p-value

Constant -0.093 0.132 0.479
Secchi Depth 0.296 0.154 0.056
Log (Chlorophyll) 0.346 0.123 0.006
Nitrogen (NH3-+NH4) , -0.021 0.119 0.859
Log (Total Phosphorus) -0.322 0.139 0.022
Log (Total Nitrogen) -0.244 0.302 0.422
Silika -0.107 0.103 0.303
Alkalinity -0.191 0.089 0.035
Log (total bacteria) -0.117 0.190 0.541
Log (cyanobacteria) | 0.018 0.193 0.925
Quality Index of dissolved Oxygen 0.513 0.163 0.002
Square of Quality Index of dissolved Oxygen 0.168 0.081 0.042
Quality Index of Total Nitrates -0.353 0.287 0.222
Quality Index of pH -0.112 0.135 0.408
Square of Quality Index of pH 0.068 0.063 0.281
Quality Index of total suspended solids -0.113 0.214 0.598
Square of Quality index of suspended solids -0.142 0.072 0.052
Quality Index of turbidity -0.224 0.128 0.083
Boat Ramp dummy 0.162 0.083 0.054
Wake dummy 0.208 0.083 -0.013
Handicap facilities dummy -0.004 0.081 0.965
Log (Acreage Use) 0.156 0.096 0.106

State Park dummy ’ 0.038 0.089 0.673
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Table 8a. Repeated Mixed Logit Model Parameter Estimates®

Model A Model B Model C
Male -9.11 -7.55 -11.92 -11.91 -5.83 -14.89 -14.85
(0.429) | (0.428) | (0.475) | (0.473) | (0.432) | (0.487) | (0.484)
Age -0.12 0.20 0.07 0.09 0.002 -1.26 -1.27
(0.074) | (0.078) | (0.081) | (0.081) | (0.078) | (0.095) | (0.095)
Age2 0.005 0.001 0.002 0.002 0.003 0.013 0.014
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001)
School -0.26 3.67 1.37 1.25 4.88 0.95 0.90
(0.387) | (0.422) | (0.524) | (0.527) | (0.433) | (0.542) | (0.540)
Household -0.49 -0.98 -1.10 -1.06 -1.25 -1.65 -1.66
Size (0.167) | (0.163) | (0.185) | (0.185) | (0.168) | (0.191) | (0.189)
Price -0.331 -0.332 -0.334 -0.334 -0.330 -0.334 -0.335
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001)
Mean Estimate for Random Coefficient
Log(Acres) 3.45 3.38 3.71 3.56 3.11 3.20 3.21
' (0.063) | (0.066) | (0.069) | (0.069) | (0.065) | (0.066) | (0.066)
Ramp 14.46 14.49 13.69 13.11 14.39 10.79 10.74
(0.828) | (0.833) | (0.843) | (0.851) | (0.826) | (0.719) | (0.719)
Facilities 1.42 1.29 0.96 1.13 0.90 1.00 0.96
(0.235) | (0.247) | (0.241) | (0.242) | (0.234) | (0.241) | (0.242)
State Park 2.99 3.59 3.43 3.59 423 3.82 3.86
(0.260) | (0.267) | (0.307) | (0.305) | (0.252) | (0.254) | (0.254)
Wake 4.10 3.54 2.13 1.58 3.43 4.27 4.33
(0.258) | (0.260) | (0.320) | (0.323) | (0.255) | (0.297) | (0.297)
a -8.91 -10.09 -10.29 -10.28 -10.42 -10.28 -10.37
(0.214) | (0.229) | (0.040) | (0.040) | (0.039) | (0.040) | (0.040)
Dispersion Estimate for Random Coefficients
Log(Acres) 0.35 0.35 0.33 0.33 0.34 0.32 0.32
(0.01) (0.01) (0.01) (0.01) (0.01) (0.05) (0.01)
Ramp 19.92 21.05 18.01 18.09 21.99 18.69 18.72
(0.62) (0.71) (0.63) (0.63) (0.58) (0.58) (0.57)
Facilities 13.13 13.38 12.68 12.54 13.24 13.20 13.25
(0.26) (0.27) (0.24) (0.24) (0.26) (0.26) (0.27)
State Park 11.75 12.26 14.29 14.27 12.54 12.77 12.75
(0.26) (0.27) (0.28) (0.28) (0.26) (0.27) (0.27)
Wake 13.38 13.28 15.79 15.70 13.63 16.30 16.34
(0.25) (0.27) (0.32) (0.32) (0.27) (0.33) (0.33)
a 2.38 2.50 2.46 2.46 2.51 247 2.47
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

Parentheses are standard errors.
* All of the parameters are scaled by 10, except a (which is unscaled)
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Table 8b. Repeated Mixed Logit Model Parameter Estimates® .

Variable Model A Model B Model C
Secchi 2.51 2.28 2.59 2.36
(0.096) | (0.098) | (0.100) | (0.100)
Log(Chlorophyll) 2.50 221 3.01 2.63
(0.223) | (0.224) | (0.234) | (0.234)
NH3+NH4 -0.01 -0.01
(0.001) | (0.001)
NO3+NO2 -1.59 -1.71
(0.071) | (0.072)
Log(Total Nitrogen) 0.32 0.41 4.87 5.48
(0.068) | (0.068) | (0.283) | (0.284)
Log (Total Phosphorus) | -1.38 -1.12 -4.03 -3.90
(0.135) | (0.141) | (0.160) | (0.164)
Silicon 1.10 1.08
(0.035) | (0.035)
pH -69.89 -64.04
(10.836) | (11.099)
pH2 4.25 3.88
(0.627) | (0.643)
Alkalinity 0.04 0.05
(0.003) | (0.003)
Inorganic SS -0.083 | -0.079 | -0.008 -0.009
(0.009) | (0.009) | (0.010) | (0.010)
Volatile SS 0.24 0.26 0.03 0.08
(0.014) | (0.014) | (0.019) | (0.019)
Log (Cyanobacteria) -1.64 | -1.71 -1.36 -1.41
(0.079) | (0.085) | (0.091) | (0.091)
Log (Total Bacteria) 1.82 1.97 0.87 1.01
(0.099) | (0.109) | (0.116) | (0.120)
Mean Perception (6 ) 1.47 2.22 3.50 3.40
(0.127) (0.141) (0.100) | (0.096)
Water Quality Index 0.40 -0.02
(0.057) | (0.006)
Log-Likelihood -59319 | -59278 -59096 -59071 -59614 | -59502 | -59503

Parentheses are standard errors.
* All of the parameters are scaled by 10, except for a (which is unscaled)
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Table 9. West Okoboji Lake vs. the other 130 Lakes

West Okoboji Average of the other Average of the 9
Lake 130 Lakes Zone Lakes
Mean Perception 6.81 5.74 5.67
Water Quality Index 9.08 7.79 7.90
Table 10. 65 Non-Impaired Lakes vs. the 66 Impaired Lakes
Median of the 65 Non- Averages of the 66 Impaired
Impaired Lakes Lakes
Mean Perception 5.94 5.60
Water Quality Index 8.17 7.45




Table 11. Annual Compensating Variation Estimates

All 130 Lakes Improved to 9 Zone Lakes Improved to 65 Impaired Lakes Improved to
Average CV West Okoboji. West Okoboji. Median
Model C; Model C, Model C; Model C, Model C; Model C,
Per Choice Occasion $0.24 $1.31 $0.02 $0.15 $0.05 $0.12
Per Towa Household $12.39 $68.35 $0.90 $7.87 $3.06 $6.23
For all Iowa Households® $14.29 $78.82 $1.03 $9.08 $3.53 $7.18
Predicted Trips® 6.68 8.53 6.47 7.45 6.53 7.42

2 Units are million dollars.

® predicted Trips are 6.45 using Model C; with current water quality index and 7.28 using Model C, with current water quality

perceptions.

01
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Appendix C. Water Quality Index

According to McClelland (1974), water quality index (WQI) is a continuous scale
from O to 100 which reflects the composite influence of nine significant physical, chemical,
and microbiological parameters of water quality. It was developed and field evaluated by the
National Sanitation Foundation (NSF) to provide a uniform method for indicating and
reporting the benefits — or lack of benefits — realized from billions of dollars invested in
stream quality improvement program.

It was developed based on an opinion research technique. A panel of 142 persons
with expertise in water quality management was carefully selected and they received a series
of mailed questionnaire. In the first questionnaire, they were asked to rate the 35 parameters
for possible inclusion in a water quality index on a scale of “1” (highest relative significance)
to “5” (lowest relative significance). In the second mailing, respondents were asked to review
their original judgments and modify them if they wished. In addition, panelists were asked to
designate not more than 15 parameters, which they considered to be the “most important” for
inclusion in a water quality index. Utilizing expert opinion derived from first two rounds of
the study, 11 parameters, or groups of parameters, were listed. In the third mailing,
respondents were asked to assign values and draw graphs for the variation in level of water
quality produced by different levels of the nine individual parameters: dissolved oxygen,
fecal coliform density, pH, biochemical oxygen demand (5-days), nitrates, phosphates,
temperature, turbidity, and total solids. Also, respondents were asked to compare relative
overall water quality, using a scale of “1” (highest relative value) to “5” (lowest relative
value) to obtain the parameter weightings. Finally, “Judgments” of all panelists were then
combined to produce a set of “average curve” scaled between 0 and 100 — one for each
parameter. |

The WQI is derived by converting concentrations of each water quality characteristic
into a corresponding index, g, which is read from the quality curve. Weight for each of the
corresponding index, w, were derived based on the summary judgments of the expert panel.

These weights were designed to sum to 1 for the nine water quality characteristics. The ¢,
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and w, values were combined into a composite multiplicative index of the following form:
Illq,-w '

The subscript refers to the i-th parameter, ani(ziln is the number of parameters (in this case,

n=9). By design, WQI varies between and is bounded by 0 and 100.

To construct water quality index, it must be modified to account for the four
characteristics (i.e., temperature, fecal coliform, phosphates, and biochemical oxygen
demand for 5-days) that are not modeled. Temperature and fecal coliform were not available
from the ISU Limnology lab and units of biochemical oxygen demand and phosphates were
not consistent with McClelland (1974). To accomplish this, new weights are calculated for
the remaining five parameters so that the ratios of the five weights are retained and the
weights sum to 1. Table B.1 below presents the original and revised parameter weights for
the nine pollutants. Each of the five quality curve are duplicated by linear interpolation
method. Although it is impossible to get the same value with respect to the parameter level,

linear interpolation method gives the value of quality curves as close as McClelland’s.

Table C.1. Original and Revised Weights for WQI parameters

Parameters . Original Weights Revised Weights
Dissolved Oxygen 0.17 0.32
Total Suspended Solid 0.07 0.13
Nitrates 0.10 0.19
Turbidity 0.08 0.15
pH 0.11 0.21
Fecal Coliform Density 0.16 0.00
Biochemical Oxygen Demand (5-day) 0.11 ' 0.00
Temperature 0.10 0.00
Phosphates 0.10 0.00

Total 1.00 1.00
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The categories of Water Quality Ladder are defined according to a corresponding
WQI values, i.e., boatable if WQI value is 25, fishable if WQI value is 50, and swimmable if
WQI value is 70.

Reference
McClelland, N. 1, “Water Quality Index Application in the Kansas River Basin,” EPA-
907/9-74-001, 1974.
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Appendix D. Carson’s Trophic State Index (CTSI)

Carson and Simpson (1996) defined trophic state as the total weight of living
biological material (biomass) in a waterbody like a lake, a river, and a stream at a specific
location and time. In accordance with the definition of trophic state, the trophic state index
(TSI) of Carlson (1977) uses algal biomass as the basis for trophic state classification.”
Because of the reciprocal relationship between biomass concentration and Secchi depth (SD)
transparency, each doubling in biomass would result in halving transparency. By
transforming SD values to the logarithm to the base 2, each biomass doubling would be
represented by a whole integer at SD value of 1m, 2m, 4m, 8m, etc. Based on this relation,
some algebra gives a trophic state index based on SD ranges from 0 to 100 as following:

CTSI _SEC =10(6-InSD/In2),
where In is a natural log transformation and SD measured in meter. The advantage of using
the SD is that it is an extremely simple and cheap measurement and usually provides a TSI
value similar to that obtained for chlorophyll.

In addition, utilizing the relationship between SD and chlorophyll pigment (Chla) and
total phosphorus (TP), trophic indices based on chlorophyll and total phosphorous are
defined as

CTSI _Chla=10{6-(2.04-0.68InChia)/In2}
CTSI TP =10{6—(In(48/TP)/In2}.
The number derived from chlorophyll is best for estimating algal biomass in most lakes and
priority should be given for its use as a TSI. The advantage of phosphorous index is that it is
relatively stable throughout the year and, because of this, can supply a meaningful value
during seasons when algal biomass is far below its potential maximum.

The CTSI reflects a continuum of “states.” The range of the index is from
approximately zero to 100, although the index theoretically has no lower or upper bounds.
The index has the advantage over the use of the raw variables in that it is easier to memorize

units of 10 rather than the decimal fractions of raw phosphorus or chlorophyll values.

22 Details can be found on the website at http://dipin.kent.edu/tsi.htm#A %20Trophic%20State%20Index.


http://dipin.kent.edU/tsi.htm%23A%20Trophic%20State%20Index
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A trophic state index is not the same as a water quality index. Since eutrophic is often
equated with poor water quality, TSI and water quality index are confused with each other.
Water quality index depends on the use of that water and the local attitudes of the people,
which is a subjective judgment. On the other hand, the TSI is an objective standard of trophic

state of any body of water.

References

Carlson, R.E., and J. Simpson, 4 Coordinator’s Guide to Volunteer Lake Monitoring
Methods, North American Lake Management Society, 1996.

Carlson, R.E., “A Trophic State Index for Lakes,” Limnology and Oceanography 22 (1977),
361-369.



108

Chapter 4. Estimation of the Impact of Water Quality Improvement

L. Introduction

The recreation demand model provides one approach to estimating the benefits of
quality improvement. However, this approach is often limited by range of the observed
variation of the quality change. To address this limitation, the recreation demand literature
increasingly makes use of contingent behavior (CB) data. In the CB framework, respondents
are asked how their pattern of trips to a set of sites would change given a proposed water
quality change.” Thus, combining observed data with CB data allows the analyst to estimate
the impact of water quality improvement on the trip behavior beyond the observed variation.
Further, even when quality variations already exist, the additional variation provided by CB
data will generally yield more precise recreation demand parameter estimates. However,
relatively little is known as to whether the stated responses to these hypothetical quality
changes are consistent with how households respond to actual quality changes. The question
is: Do individuals respond to hypothetical water quality changes in the same as way as they
respond as actual water quality changes? Do they respond more to hypothetical water quality
changes (e.g., with the hope of influencing policy change or because they ignore their budget
constraint)? Alternatively, do they respond less because they do not believe the changes will
actually occur?

The purpose of this chapter is to investigate individual’s response to a hypothetical
water quality improvement. Toward this end, I jointly model the reqreation demand model
using observed and CB trip data collected from the 2004 Iowa Lakes Survey. The Iowa lakes
survey collected three sets of trip data for 131 lakes in Iowa: a) actual trips in 2004,

b) anticipated trips in 2005 to the same lakes given current lake conditions and c) anticipated
trips in 2005 given a hypothetical improvement to the lakes. The hypothetical water quality

improvement was described in terms of the water quality ladder index detailed in the

3 Sometimes it is referred as “stated preference”, SP, data.
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previous chapter. Specifically, the hypothetical water scenario proposed improving all lakes
in the state to be at least safe for swimming, with a water quality index of 7. The three types
of recreation data provide a unique opportunity to investigate the consistency of individual
responses to actual versus hypothetical environmental conditions.

The remainder of this chapter is divided into six sections. Section II provides a review
of the existing literature on the estimation of the recreation demand using CB data. Section
IIT describes the observed and CB trip pattern under the current water quality and the
hypothetically improved water quality level collected in the 2004 Iowa Lakes Survey. The
repeated mixed logit model (RXL) to be used in the analysis is described in Section IV. The
estimation results are then discussed on Section V. Section VI provides welfare measure

estimate based on the estimated model and conclusions follow in Section VII.

II. Literature

A number of recent recreation demand studies have combined observed and
contingent behavior data in order to better estimate household response to environmental
quality changes. Adamowicz et al. (1994) compare site selection choices estimated from
actual data versus under hypothetical scenarios. Adamowicz et al. (1997) compare the choice
of moose hunting sites using observed (i.e., revealed preference, RP) and stated preference
(SP) data and investigate the effect of perceptions versus objective measures of
environmental quality on site demand. Both Englin and Cameron (1996) and Azevedo,
Herriges and Kling (2003) combined data on the number of trips actually taken with intended
number of trips given alternative trip costs. Layman, Boyce, and Criddle (1996) combine
observed travel cost data and hypothetical travel cost data to estimate the value of three
alternative recreational fishing management proposals. Loomis (1997) uses information on

actual trips at current trip costs, intended visitation at higher trip costs, and intended
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visitation with two proposed quality levels of the resource. Grijalva et al. (2002) use three
types of mountain climbing data: the first one is prepolicy observed climbing trip data, the
second one is CB climbing trip data given hypothetical changes in site access, and the final
one is postpolicy observed climbing trip data. The CB trip data consisted of two hypothetical
policy scenarios. One is the closure of one site and the other is the closure of two sités. They
show that policy change causes significant changes in consumer surplus.

The primary point of most. of the above studies is to illustrate the benefits of
combining observed and contingent behavior trip data for the valuation of environmental
quality changes. One such advantage is the ability to evaluate policies beyond the realm of
. observable levels of a given resource before it is effectively lost, or over quality and price
changes that are policy relevant but historically unobservable (Adamowicz et al., 1994,
Englin and Cameron, 1996; Grijalva et al., 2002). Adamowicz et al. (1994) also state that the
multicollinearity between quality characteristics that is often present in observed data may be
reduced through the strategic design of quality levels in the intended behavior portion of the
survey. In addition, Ben-Akiva and Morikawa (1990) show that combining these two data
sets increases the accuracy of parameter estimation over models using either type of data
alone.

Considerably less attention has been paid‘in the literature to testing the validity of
individual responses to contingent behavior scenarios; i.e., whether observed and contingent
behavior data are consistent with the same underlying preference structure.”* Ideally, testing
the “consistency” of the two data sets would take the form of tests for the equality of

parameters estimated separately for the two types of data. The problem is that most data sets

?* This issue is analogous to concern in the contingent valuation literature regarding the incentive compatibility
of CV referendum questions.
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lack sufficient variation in both price and quality to fully test for consistency in the responses
of participants. Azevedo, Herriges and Kling (2003) test for the consistency of RP and CB
trips to wetlands, but are limited to investigating travel cost responses (real and hypothetical).
Their data lacked sufficient variation in wetland quality attributes. Adamowicz ef al. (1997)
also test for consistency between observed and contingent behavior data. They compare the
choice of moose hunting sites using observed (RP) trips to and stated preferences (SP) in the
form of conjoint data. > They also investigate the effect of perceptions versus objective
measures of environmental quality on site demand. The subjective perceptions of quality are
then used as explanatory variables in an RPperceptions model. An RP gpjective model is also
developed using objective perceptions of quality as explanatory variables. Both models are
pooled in order to test for consistency between actual and CB responses. For each of these
pooling models they fail to reject the null hypothesis of parameter equality. However, the
consistency test for a third model, which pools all three data sets, results in the rejection of
parameter equality.

There are two limitations to the Adamowicz et al. (1997) study. First, limitations in
the actual site quality attributes preclude them from estimating a full set of quality effects for
the revealed preference data alone. Second, the contingent behavior data is based on
hypothetical sites and attributes. The hypothetical nature of the sites makes the direct
comparison (and modeling) of the RP and CB data less straightforward. The advantage of the
Iowa Lakes data, in contrast, is that there is ample variation in the water quality attributes and

the RP and CB trip information concerns the same set of actual sites.

% Conjoint CB surveys ask respondents to choose among pairs (or sets) of hypothetical sites, rather than
reporting visits to actual sites under hypothetical quality changes.
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I11. Data and Survey Results

The 2004 Towa Lakes Survey is the third year survey in a four year study, jointly
funded by the Iowa Department of Natural Resources and the USEPA, aimed at
understanding recreational lake usage in Iowa and the value placed on water quality in the
state. The survey was sent by direct mail in February of 2005 to the 5,206 Iowans who
completed the 2003 survey.?® The survey collected information on a household’s past trip
behavior in 2004 and anticipated trips in 2005 under both current and hypothetically
improved water quality levels.

Similar to the 2003 Iowa Lakes Survey, standard follow-up procedures were used to
encourage a high response rate to the survey, including a postcard reminder mailed two
weeks after the initial mailing and a second copy of the survey mailed one month later. In
addition, survey respondents were provided with a $10 incentive for completing the survey.
A copy of Towa Lakes Survey 2004 is included as an appendix to this chapter (Appendix A).

The survey itself has two major sections. The first section (pp 3-7) asks respondents
to report how frequently they visited each of 131 lakes in the state during 2004 and how
frequently they intend to visit in 2005 under both current conditions and a proposed water
quality improvement. In describing both current and hypothetical water quality conditions,
the water quality ladder index described in the chapter 3 was used. The proposed water
quality improvement scenario would move all the lakes to at least the swimmable level (7). If
current water quality index of a lake is below 7 (swimmable) then the improved water quality
is 7. If current water quality of a lake is above or at 7, then water quality is unchanged under

the scenario. Under this scenario, the water quality of fifty-two lakes in Iowa would be

%% The 2003 Towa Lakes survey was mailed to 8,000 Iowa residents selected randomly from among households
living in the state.
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improved, while seventy-nine lakes are remained unchanged. Color coded numbers, along
with the water quality ladder, were used to convey the water quality conditions.

In order to collect information about each household’s single day trips for each of the
lakes in the survey, three columns were provided in which to indicate actual single day trips
in 2004 and anticipated trips in 2005 under current and proposed water quality levels. The
first column is for the actual number of past trips in 2004 (i.e., “observed trips”) and the
second column is for the anticipated number of trips in 2005 under the current water quality
(i.e., “next year trips”). The third and fourth columns show the current water quality
conditions and proposed water quality improvement in terms of the water quality ladder.
Given the water quality improvement scenario, respondents are asked to indicate how many
single day trips they would take to each of the lakes in the last column (i.e., “CB trip”).

The second section of the survey (pp 7-10) collects socio-demographic information,
including age, gender, education, etc. Further, the second section of the questionnaire asks
for details of a household’s employment status including the number of work weeks, paid
vacations, work hours per week, either hourly wage or salary, and the work options (e.g.,
whether individual is free to choose their number of hours to work). These latter data are not
used for the current analysis.

A total of 4,310 surveys have been returned to date. Allowing for 65 undeliverable
surveys and 14 deceased individuals in the original sample this corresponds to an 84%
response rate. The high response rate is a result, in part, from the fact that the sample used for
the survey is a subset of the last year’s respondents. From the 4,310 completed surveys,
1,223 surveys were available in time for this analysis.”” A portion of the respondents,

however, did not complete the survey sections on 2004 and 2005 trips: 41 for observed trips,

%" The remainder of the surveys are still in the process of being entered and checked for coding errors.
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100 for next year trips, and 362 for CB trips. In order to maintain a balanced panel, the union
of these three non-responses was deleted, from the sample, leaving the 838 respondents who
had provided information on all three types of day trips.

Finally, similar to the previous chapter, anyone reporting more than 52 total single
day trips to the 131 lakes in any of the three types of trips was excluded. This reduced the
sample to 782 observations. Defining the number of choice occasions as 52 trips per year
allows one trip to one of the 131 Jowa Lakes per week. While the choice of 52 is arbitrary, it
seems a reasonable cut-off for the total number of allowable single day trips for the season.
Invariably some of the respondents who recorded trips greater 52 did in fact take this number
of trips. However, since this survey was randomly sent out to Iowan, some of the recipients
live on a lake and it may be those individuals who record hundreds of ““trips” are simply
returning to their place of residence.

The initial question on the individual’s trip behavior in next year is whether or not
he/she takes more trips to the improved lake. Table 1 lists the summary statistics for the three
types of trips and for several key socio-economic variables.?® The average number of
observed single day trips in 2004 to all 131 lakes is 6.65, ranging from zero to 50 trips per
year. The average number of trips anticipated in 2005 under current conditions is 9.11 and
9.26 under hypothetically improved water quality. Thus, survey respondents expect to take
more trips in 2005 regardless of whether the water quality will be improved or not. The
survey respondents are more likely to be older, male, have a higher income, and be more
educated than the general lowa population. Schooling is entered as a dummy variable
equaling one if the individual has attended or completed some level of post high school

education.

28 All of the tables are in Appendix B.
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Table 2 summarizes the average of differences between the total numbers of trips to a
lake under the hypothetical water quality improvements and the anticipated numbers of day
trips under current conditions, both for 2005. As expected, the average number of day trips
increases for those lakes with initial water quality is below 7 (i.e., for the lakes that are

| improving). The lake whose water quality improved from 3 to 7 is the Lake of Three Fires, in
Taylor County, and its day trips increases by 12 under the proposed water quality |
improvements. Day trips to lakes whose initial water quality is 6, increased by 6.5 over the
21 lakes. On the other hand, day trips to lakes whose initial water quality is at or above 7
decrease. Table 2 suggests that proposed water quality improvement generally increase an
individual’s anticipated trips to the improved lakes and that they, on average, substitute trips
to non-improved lakes with trips to improved lakes. For example, suppose there are three
lakes, A, B, and C, around individual i and travel costs to each of three lakes are $10, $14,
and $20 respectively. Suppose water quality of three lakes are rated as 5 (A), 6 (B), and 7(C)
on the water quality ladder and individual i took trips to the one lake whose water quality is
at 7 (Lake C) because water quality is the most important factor to his/her site choice
decision. Now, suppose water quality of the lake A and B is improved to the swimmable
level (7). Then the hypothetical water quality improvement changes the individual i’s
intended trips such that he/she decreases trips to lake C while increasing trip to lake A or B.
A more detailed analysis will be required to measure the speéiﬁc impact of hypothetical
water quality improvement. However, these aggregate data do suggest that individuals

respond to the hypothetical water quality improvement in the manner we would expect.
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IV. Model

Three types of data (observed trips in year 2004, next year trip under current water
quality, and contingent behavior trip under hypothetically improved water quality) are used
to jointly estimate the recreation demand and to test the hypotheses regarding contingent
behavior responses. Two hypotheses are of interest: one is whether individual anticipate
changes for their day trips next year and the other is whether individuals respond to
hypothetical water quality improvements in the same way they responded to actual water
quality different across lakes in 2004.

The model begins by specifying the utility that individual i associates with visiting
site j on choice occasion ¢ under scenario s, where s = 04 (for 2004 RP data), 05 (for 2005
anticipated trips), and 05H (for 2005 trips under hypothetical conditions). Specifically, I

assume that

U, =WV,

fts ij>

Z,X;,8)+

Eiiss
_ K'S; +

= 1
{a,. +BD, AP, +(5+6"D)Z, +8"Z] +y X, +¢, M)

i=)-- 1, j=1-Jt=1,-.52 .

The notation is similar to the model in chapter 3. Each data set has 52 choice occasions. V is

the deterministic component of utility and &, is an error component which is assumed to be

ijts
an 7id extreme value random variable. The vector s; consists of socio-demographic

characteristics. P, is the travel cost from each Iowan’s residence to each of the 131 lakes as
calculated with PCMiler. Z, represents water quality ladder index for lake j under scenario

s. D, is the dummy variable that = 1 for s = 05 and 05H, and = 0 otherwise. Thus,

3, captures shifts in the intercept of ¥ between 2004 and 2005, while 6% captures shifts in
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the marginal response to water quality. Z ;’ denotes the hypothetical difference between
baseline water quality and the water quality under scenario s. Thus Z ,I: = ( for s = 04 and 05,
while taking nonnegative values for the contingent behavior trip (s = 05H). The parameter
6" then captures shifts in the marginal response to a hypothetical improvement of water
quality. X; denotes other site characteristics (including lake facilities and state park
designation).

Notice that the parameters «;, f;, and y; are allowed to vary across individuals,
allowing for heterogeneity of preferences and correlation in the utilities of individuals across
choice occasions. Specifically, these parameters are assumed to be‘ distributed randomly
across individuals in the population. The random parameter &, was introduced by including
dummy variable R; which equals one for all of the recreation alternatives (j =1,---,J) and
equals zero for the stay at home option (j = 0), following Herriges and Phaneuf (2002).
Similarly, B;was introduced by including R; x D, which equals zero for the actual trips in
2004 and stay at home option while it equals one for all of the recreation sites for anticipated
trips in 2005.

The random parameters «;, f;, and »; can be viewed as sum of their respective
means (& , B, and 7 ) and individual deviations from these means (¢, , p;,and 7,), allowing
for variation in an individual’s tastes relative to the average tastes in the population (Train,

1998). Therefore, we can rewrite the utility function in (1) as

K,si + N> J =0
ijts —{ ° (2)

@+ BD,-AP,+(6+8%D)Z, +5 ZE 7 X, 41, =10,

where the unobservable portion of utility is given by
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E1gr i=1,N
7]-. — i0ts (3)
") G+pD,+TX; +ey, =1 T i=l e Nt =152,

This unobservable portion of utility is correlated over sites and trips because of the common
influence of the deviation terms which vary over individuals. For example, an individual with
a large negative deviation from the mean of &, will be more likely to choose the stay-at-home
option on each choice occasion, the ¢, capturing in this case some unobserved attribute of the
individual causing them to prefer staying at home (e.g., they cannot swim or do not like
fishing). On the other hand, someone with a large positive deviation ¢, will tend to take many
trips. In addition, by introducing dummy variable D,, the error correlation due to “repeated
choices” is addressed. Thus, the error correlation across repeated choices increases as the
variance of the random coefficients increase. Random parameter interpretation is useful
because error correlation due to repeated choices and preference heterogeneity can be
addressed. Further, since the unobserved portion of utility is correlated over sites and trips
choice occasions, concern about the familiar ITA assumption does not apply.

Given that the ¢,

js S are assumed to be iid extreme value, the resulting model

corresponds to McFadden and Train’s (2000) mixed logit framework. A mixed logit model is
defined as the integration of the logit formula over the distribution of unobserved random
parameters (Revelt and Train, 1998). Let the vector of random parameters in the model
defined above denoted by w, =(,, B;,7;)and let £ =(4, k, 5, 6%, 6" )denote the fixed
parameters. If the random parameters, w,, were known then the probability of observing
individual i choosing alternative j on choice occasion ¢ for scenario s would follow the

standard logit form
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Ly (@,6) = JeXp(Vijts (@,,8)) ‘

2. exp[Vy, (0,8)]

“4)

Since Vs is not a function of ¢, the overall contribution of individual i to the likelihood

function would be
Li (a)i’é—':) = HHLys (a)iﬁé)nijs >
s

where ny; denotes the number of trips by individual i to site j under scenario s and

L;,(@,,&) denotes the common value of L, (,,£) across at £. Since the ; is unknown, the
corresponding unconditional probability, (6, ¢) is obtained by integrating over an assumed
probability density function for the @, ’s. The unconditional probability is now a function of
@, where @ represents the estimated moments of the random parameters. 2° This repeated
Mixed Logit model assumes the random parameters are iid distributed over the individuals so

that

P(0,£)= [L(@,&) f (@] 0)do, . (5)

No closed form solution exists for this unconditional probability and therefore simulation is
required for the maximum likelihood estimates of @ and &£°° One thing to note is that since
individual i appears three times in the model, the same draws of the random parameter

vector are used for three repeated choices. This specification does not lead to perfect error

¥ In the current model, 9=(}7,67,B,O'71,"',O'7k,0'a)

3% Train (2003) describes simulation methods for use with mixed logit models, in particular maximum simulated
likelihood which I employ. Software written in GAUSS to estimate mixed logit models is available from
Train’s home page at http://elsa.berkeley.edu/~train.
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correlations because the independent extreme value term ¢, still enters the utilities for each

ijts
choice.

Again, there are two variations which might impact the individual’s trip behavior in
the model. One is year-to-year fluctuation (from year 2004 to year 2005) given current water
quality and the other is hypothetical water quality improvement in year 2005. The parameters
B.and 8% capture changes in behavior due to year-to-year fluctuation where f; captures
mean shift in total trips and §* reflects changes in response to water quality between years.
In contrast, the parameter 6 captures differences in the response to hypothetical water
quality improvements in 2005.

Three hypotheses are of interest. The first hypothesis of interest is whether or not
individuals respond differently to hypothetical water quality improvement than they do to
actual water quality differences across lakes, i.e., H, :5” =0. The second hypothesis of
interest is whether or not individuals anticipate changeé in their overall trips between 2004

and 2005. This hypothesis can be written as HZ : 8, =0, 8% = 0. The last hypothesis is the

joint hypothesis; i.e., H, : 8, =8 =6"=0.

V. Estimation Result
A. Specification

The model in equation (1) uses the same functional forms as in the chapter 3 for the
lake characteristics and socio-demographic variables. The water quality index is entered
linearly. Socio-demographic characteristics are assumed to enter through the “stay-at-home”
option. They include age and household size, as well as dummy variables indicating gender
and college education. A quadratic age term is included in the model to allow for

nonlinearities in the impact of age. Site characteristics are included with random coefficients.
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This is to allow for heterogeneity in individual preferences regarding site characteristics,
such as wake restrictions and site facilities. For example, some households may prefer to visit
less developed lakes with wake restrictions in place, while others are attracted to sites
allowing the use of motorboats, jet skies, etc. It is assumed that the random parameters y,are
each normally distributed with the mean (7, ) and dispersion (o, ) for each parameter. Three
models are estimated: the full model and two reduced models with hypothesis 2 (Model R;)

and hypothesis 3 (Model R;) respectively.

B. Estimation Result

The resulting parameter estimates of three models are presented in two Tables, 3a and
3b. Table 3a lists parameter estimates for socio-demographic variables and mean and
dispersion parameters for random coefficients for lake amenity variables. Except for age and
household size variable in full model, all the coefficients are significant at 1% level while age
square variables in three models are significant and positive. In general, these variables do
not vary substantially across the three models. Note that the socio-demographic data are
included in the conditional indirect utility for the stay-at-home option. Therefore, male
individuals are more likely to take a trip to a lake. Age has a convex relationship with the
stay-at-home option and therefore has a concave relationship with trips. Higher-educated
individuals appear to be more likely to stay-at-home, with corresponding positive coefficients
on the school variable. The price coefficients are all negative and significant and virtually
identical in three models.

Turning to the site amenities, all of the parameters are of the expected sign. As the
size of a lake increases, has a cement boat ramp, gains handicap facilities, or is adjacent to a
state park, the average number of visits to the site increases. Notice, however, the large

dispersion estimates. For example, the dispersion on the size of the lake indicates almost all



122

people prefer bigger lakes. The large dispersion on the “wake” dummy variable seems
particularly appropriate given the potentially conflicting interests of anglers and recreational
boaters. Anglers would possibly prefer “no wake” lakes, while recreational boaters would
prefer lakes that allow wakes. It seems the population is roughly split, with slightly more
than a half of the visitors preferring a lake that allows wakes and the rest of visitors
preferring a “no wake” lake. Lastly, the mean of «,, the trip dummy variable, is negative,
indicating that on average the respondents receive higher utility from the stay-at-home
option, which is expected considering the average number of trips is 7 out of a possible 52
choice occasions. On the other hand, the mean of f; is positive, indicating that on average
respondents anticipate receiving higher utility from taking the trips in 2005 regardless of
water quality. The dispersion on p,; is relatively small, though statistically significant,
indicating the most individuals have S;> 0.

The three parameter estimates regarding individual’s water quality responses are
reported in Table 3b. Beginning with the full (unconstrained) version of the model, all three
of the water quality related parameters are statistically significant. As was the case in chapter
3, the parameter & indicates that individuals do respond positively to water quality
conditions. There also appears to be a statistically significant, though small, increase in this
response between 2004 and 2005, with 6% = 0.021. Finally, the response to the increased
(hypothetical) water quality is little bit smaller than the response observed to actual water
quality for s = 04 and 05, with 5" slightly decreasingv the marginal impact of a water quality
change.

Therefore, hypothesis that individuals do not respond differently to hypothetical
water quality improvements H, is rejected. It is also the case that individuals have a

somewhat larger response to water quality in terms of their 2005 trip plans. The likelihood
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ratio test statistic comparing the full model versus Ry is y*= 55.4 with 2 degree of freedom
so that H] is rejected with p-value is less than 0.001. Similarly, the joint hypothesis

H}: B, =58% =6"=0 is rejected at 1% critical level, with a likelihood ratio test statistic of
7 °= 63.8 with 3 degree of freedom. The individual marginal responses to water quality
conditions in 2004 and 2005 and hypothetically improved water quality are significantly

different with a marginal effects of 0.15, 0.17, and 0.13, respectively.

VI. Welfare Estimation

The results of the previous section indicate that individuals respond less to the
hypothetical water quality improvement than they do to actual water conditions. In this
section, the impacts of year-to-year variation and the hypothetical water quality improvement
are investigated in terms of the predicted trips and annual compensating variation (CV) under
a water quality improvement to Storm Lake. The current water quality of Storm Lake is rated
asas, Which‘ is “fishable” according to EPA’s water quality ladder. The proposed change is
to improve water quality of this lake up to 7, which is “swimmable”. The question is: while
the CB data yield a statistically significant different marginal response to water quality, are
the predicted trips and welfare implications substantially different?

The full (unconstrained) model is used for welfare estimate in order to capture the
three responses of individuals to actual water conditions in 2004 and 2005 and to
hypothetical water quality improvements. Based on the test results in Section V and the
random parameter vector estimates, 6, =(a;, f;,7;)" , the conditional compensating variation
associated with a change in water quality index from Z;to Z! for individual i on site choice

occasion ¢ under scenario s is given by
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CVi (6) = %{ln[z exp(Vy[Z;36, D]~ 1n[z exp(Vy, (2,0, ])]} ; (6)

which is the compensating variation for the standard logit model. The unconditional

compensating variation does not have a closed form, but it can be simulated by

R

CV, 6,) = %;i{m[;exp%m [22;6/ D]~ 1n[§ exp(V;[ 2,36, m} , @)
where R is the number of draws and r represents a particular draw from its distribution. The |
simulation process involves drawing values of 6, =(«;, f;,7;)" and then calculating the
resulting compensating variation for each vector of draws, and finally averaging over the
results for many draws. A total of 2,500 draws were used in the simulation. One thing to note
is that, although indirect utility function depends on scenario s, summation in the bracket
should be over the sitesj only. Since indirect utility function takes three different forms with
respect to three scenarios, three compensating variations are estimated.

The resulting welfare estimates are provided in Table 4, along with the predicted
number of trips under each of three models (s = 04, s = 05, and s = 05H). Mean predicted
trips and after improvement predicted trips do not vary much across three scenarios. After
improving Storm Lake’s water quality up to “swimmable” predicted trips to Storm Lake
water condition scenarios increases up to 33% (from 0.12 to 0.16). In contrast, predicted trips
to Storm Lake under hypothetical water quality scenario are little changed.

The annual compensating variation (CV) estimates per Iowa household under actual
water conditions are somewhat larger based on the s = 05 versus the s = 04 responses ($1.24
and $1.11 respectively). In contrast, the annual compensating variation per Iowa household

based on the hypothetical water quality improvement scenario (s = 05H) is reduced to $1.01.
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This is the lowest compensating variation among those obtained under the three scenarios.
One possibility is that individuals do not believe the hypothetical water quality improvement.
Aggregating to the annual value for all Iowans simply involves multiplying by the number of

households in Iowa, which is 1,153,205.%!

VII. Conclusion

Individual’s response to hypothetical water quality improvement is measured and
tested whether it is significantly or not using three sets of trip data for 131 lakes in Iowa:
actual trips in 2004, anticipated trips in 2005, and anticipated trips in 2005 given a
hypothetical improvement to the lakes. The trip data sets are collected from the 2004 Iowa
Lakes Survey. The hypothetical water quality scenario is to improve all lakes in the state to
be at least safe for swimming. Survey respondents appear to increase their anticipated trip to
the improved lakes. A Repeated mixed logit model estimation result shows that individuals
respond less to the hypothetical water quality improvement than they do to actual water
quality. One explanation may be that individuals do not believe hypothetical water quality
improvements will indeed occur.

The results in this chapter should be of some comfort to policymakers and
practitioners. While the marginal response to hypothetical water quality changes are smaller
than observed responses, and the difference is statistically significant, the differences are
small. Moreover, at least for the Storm Lake water quality scenario, the implications in terms
of trips and welfare measures are also small. Whether these results hold up in other settings is

an empirical question.

*! Number of Iowa households as reported by Survey Sampling, Inc., 2003,
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One issue in jointly estimating the model using the three data sets is scale parameter
estimation although this is not investigated in the analysis. Although the error generation
process for a collection of next year trip and contingent behavior trip might be expected to be
the same, it may be different from the process producing the actual trip data. In particular, the
effect of unobserved variables may produce different variances for the &, terms in the three
data sets. In this case the variance of one data set must still be normalized to unity, but the
relative variance for the remaining data set is identified and can be estimated. By convention,
the actual trip data are assumed to reflect the baseline scale associated with the “observed
behavior”. Anticipated trip data sets scale coefficients are then defined as the multiplicative
factor applied to all of the two data sets tc; equalize the variances of the stochastic portion of
the utility function. Because scale and variance have a reciprocal relationship, values less
than one imply that the next year and contingent behavior data sets variance is larger than the
observed trip data variance component. Thus, one refinement of the current analysis would

be to allow for different variance scales between the RP and CB data.
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g n order to make sound decisions
concerning the future of lowa lakes,

it is important to understand how the
lakes are used, as well as what factors
influence your selection of lakes to visit.
The answers you give to the questions in
this survey are very important. Even if
you have not visited any Jakes in lowa,
please complete and return the
questionnaire. It is critical to understand
the characteristics and views of both
those who use and those who do not use

the lakes.
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n this first section, we would like to find out which of the lakes in the en-
closed map you visited in 2004 and how your lake visits might change in the

future with changes in lake water quality.

1.

Please indicate in the first column how often in 2004 you ot other members of your houschold
visited each of the lakes listed on the following pages for a single day trip. In this questionnaire, we
will be asking you dewiled information only about your single day trips {and not overnight uips).
H you did not visit any lake in Towa in 2004, please check this box.

£11 did not visit any lakes in lowa in 2004.
1l you ook overnight trips 1o Towa lakes in 2004 please chieck this box
0 1 took one or more overnight trips to lakes in lowa in 2004,

Please indicate in the second column how many single day trips you plan to make to each of the
lakes in 2003. If you do not plan to visit any lakes in towa in 2005, please check this box.

€1 1 do not plan to visit any lakes in lowa in 2003,

There are currently effons underway w improve the water quality of lowa’s lakes. We are interested
in knowing how these changes might impact your single day wips 10 lakes. One way of thinking
about water quality is to use a ladder like the one shown below: The 1op of the water quality ladder
starxls for the best possible quality of water, and the bottom of the ladder stands for the worst. On
thie ladder vou can see the different levels of water quality

) For example: The lowest level is so poltuted that it has ol, mw sewage,
Water Uuality Ladder  and/or other things in it like trash; it has almost no plant or animal life,

Best possible
water guafity

smells bad, and contact with it is dangerous to human health, Water
guality that is “boatable” would not harm you if you happened 1o fall into
it for a short time while boating or sailing. Water quality that is “fishable”
is a higher level of quality than “boatable.” Although some kinds of fish
can live in boatable water, it is only when water is “fishable” that game
fish like bass can live in it Finally, “swimmable™ water is of a high
enough qualizy that it is safe to swim in and ingest in small amounts.

bame st For each of the lakes below, we have indicated i?}f: current water quakity
She bass o conditions in terms of the water quality ladder, For example, Arbor Lake
in Powershick County is currently rated asa 6 on the water quality
fadder. This is above the minimum for fishable, but below the swinmmable
fevel. Badger Creek Lake in Madison county, on the other hand, Has 2
current water quality level of 4, which is okay for boating, but not
fishable. In the last column of the rable, we would like you to indicate
how many single day trips vou would make 1w each of the lakes given all
of the lakes were improved o at least swimmable (7). Notice that many

Harst um;lm lakes are already at or above the swimmable level. Please keep in mind
water quality

that you may choose w take fewer trips to some lakes, while taking more
trips 10 others. If you would not plan to ke any wips to lowa lakes, even
given the water quality improvements, please check the following box:
{31 would not plan to visit any Inkes in Iowa in 2005 even if the water quality improved

as indicated.
lowa Lakes Survey (3
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Humber of Visits

Anticipated
Single Day Trps
with the higher

Actust Anticlp Water Quality Praposad

Hame of Lake (Connty) 2004 2008 [ Current] Proposed] Water Gusiity
Lake Ahgusbl (Waren) LA ﬁ*@s‘
Acbor Lake (Powestiek) # . {irips) #__ onps)
Astownend’ Uake (Potiawatiamigl: - 4. oipal # ey
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4. Of the wips you've reported on the preceding pages what percentage
of these were

a} alone or only with members of yowr immediate household %
b} with friends or members of another houschold %
¢) trips members of your household took but you did not S,
100 %

Waorst pusuible

water qusity

help us better understand how household characteristics affect
an individual’s use of lowa lakes and attitudes towards changes in them. It will
also help us to determine how representative our sample is of the state of lowa.
All of your answers are strictly confidential. The information will only be used to
report comparisons among groups of people. We will never identify individuals or
households with their responses. Please be as complete in your answers as
possible. Thank you.

E nformation on you and other members of your household will

5. What is vour age?
I Under 18 2634 050-59 B76+
018-23 035-49 060-75
6. Youare
CiMale CIfemale
7. What is the highest level of schooling that you have completed? (Please check only one)
[ISome high schaol or less  OSome college or trade/vocational schoot  TlAdvanced degree

CiHigh school graduate OColege graduate

Towa Lakes Survey /7
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8. How many children live in your household (18 or under)?
9. How many adults (including yourself) live in your household? __

10. What is your total household income before axes for 20047
ClUunder $10,000 0525.000-520990  [J350,000-859.000  [I$125.000-$149,000
[1$10,000-$14,900 [1$30,000-$34,999 [0$60.000-574,999  Dover $150,000
[1%15.000-$19.900 3$35.000-539.999  [3$75.000-599,999 [1$20.000-524.999
[3540,000-849 999 OI$100,000-%1 24,000

11, How many of the adults you reported in question 9 contribute o your reported household
income?

E nformation on employment helps us better understand how time spent
working affects an individual’s or household’s use of lowa lakes since time
spent at a recreational spot is time that cannot be spent at work. Again, all of
your answers are strictly confidential. The information will only be used to
report comparisons among groups of people. We will never identify individuals
or households with their responses. Please be as complete in your answers as
possible. Thank you.

12. What is your current employment status?

OFallime  DOparttime  Oself-employed  Ostudent Dunemployed  Clretired

13. i vou are currently emploved, how many weeks per year do vou work?

13a.  Of these weeks, how many are paid vacation? |
14. 1 you are currently employed, how many hours per week do you typically work?

15. H you are currently employed, are the number of hours you work per week scheduled for you
{for example, your emplover requires a 40 hour work week, or schedules hours in advance). or
are you free to choose when and how long you work?

Ofixed/scheduled hours OFree o choose

8 / lowa Lakes Survey
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16. U you had the opportunity to work fewer hours and receive less income, or work more hours
and receive more income, would you change your weekly work hours, and if so by how much?

CINe, 1 would not change my weckly work hours

Oes, T would change to working fewer hours and reccive less income

16a.  How many less hours would you work per week, if you could work as many hours
as you wanted?

CYes, | would change to working more hours and reccive more income

16h.  How many more hours would you work per week. if you conld work as many hours
as you wanted?

17. 1f you are currently emploved, are you paid an howrly wage, or do you receive a salary?
1 am paid an honrly wage
y wag

Wage per hour is approximately:

OUnder $5.00 0511.00-812.99 1$19.00-$20.99 DI$27.00-528.99
[14$5.00-$6.99 0513.00-$14.89 08210082299 Dover $29.00
087.00-58.99 03515.00-316.99 [3823.00-524.99

(0$9.00-510.99 CI517.00-518.99 [18235.00-526.99

01 am paid a salary

Yearly salary is approximately:

Ounder $10.000  [J$25.000-529,999  [J$50.000-$59.000  [I$125.000-8149,000
D$10,000-514,000  [3830,000-534.900  [I560,000-574999  Oover 3150000
O$15,000-319.000  00%35,000-$30,999  [TI$75,000-599,999

[1$20.000-824.99¢  UI540,000-849.999  [I5100.000-8124.000

If there is a second adult in your household, please answer the same set of
questions for that person.

18. What is the other adult’s current employment status?
CFull dme Opart tme  Oself-employed Ostudem

Elunemployed  Ulretired

19. 1f the other adult is currensly emploved, how many weeks per vear does hefshe work?
} Py ¥ s —

19a. Of these weeks, how many are paid vacation?

towa Lakes Survey /9
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20. 1 the other adult is cwrrently employed, how many hours per week does hefshe rypically
work?

21 1f the other adult is currently employed, are the number of hours he or she works per week
scheduled for him or her {for example, his or her employer requires a 40 hour work week, or
schedules hours in advance), or is he or she free 10 choose when and how long he or she works?

O¥Fixed/scheduled hours OFree w choose

reé
[ad

If the other adult had the opportunity to work {ewer hours and receive less income, or work
more hours and receive more income, would he/she change histher weekly work hours, and if so
by how mach?

[INo, the other adult would not change his/her weeldy work hours

CI¥es, the other adult would change 1o working fewer hours and receive less income

21a. How many less hours would the other adult work per week, if he/she could work as many
hours as he/she wanted? __

UYes, the other adult would change to working more hours and receive more income

21b. How many more hours would hefshe work per week, if hefshe could work as many hours
as  he/she wanted?

23, If the other adult is currently emploved, is he/she paid an hourly wage. or does he/she
receive a salary?

OThe other adult is paid an hourly wage

Wage per hour is approximately:

OUnder $5.00 [I$11.00-512.99 [I519.00-520.99 (3527.00-528.99
D85.00-36.99  [OS13.00-514.09 CIB21.00-522.99 Oover $29.00
Os7.00-38.99  LIS13.00-$16.99 8230032499

D59.00-$1099  [IS17.00-318.99 {3525.00-826.99

OThe other adult is paid a salary

Yearly salary is approximately:

DiUnder $10,000 D825000-520999  [830.000-859.000  [I5125.000-5149.000
[I$10000-514.000  TIS30,000-534.909  [I860.000-574.999  Dlover 130,000
BI315,000-519,900 [335.000-$39,999  [I$75.000-$99,999

01520,000-524.990  [J540.000-%49,999  [IS100 000-5124 000

13 Howa Lakes Sarvey
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Thank you for your pariicipation it this survey, After compietion, surveys should be reiued to:
Catherine Kling
568 Heady Hall, Mailstep <<Mailstop>»
towa State Liniversity
Ames, IA 300111070

fewa Lahes Swvey /11
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fowa State University

Deparunent of Economics
368 Heady Hal
Ames, A 500

1-1070
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Appendix B. Tables

Table 1. Summary Statistics of total number of trips and socio-demographic variables®

Mean Std. Dev Minimum Maximum
2004 (Observed) Day Trips 6.65 8.88 0o - 50
2005 Anticipated Day Trips 9.11 10.88 0 52
2005 CB Day Trips 9.26 11.35 0 52
Income $58,608 $37,160 $7,500 $200,000
Male . 0.65 0.47 0 1
Age 54.46 15.57 15 82
School 0.70 0.46 0 1
Household Size 2.45 1.23 1 10

* Sample Size = 782 individuals



~ Table 2. Average Number of Trip Changes®
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Proposed Water Quality
Initial Water Quality 7 8 9
3 12.0
(1)
4 14.4
®)
5 4.4
(25)
6 6.5
@1
7 -3.7
(32)
8 -2.0
(43)
9 -1.8
4

# Sample Size = 131 Lakes and parentheses are number of lakes



Table 3a. Parameter Estimates®
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Full Model Model R, Model R,
Price -0.381 -0.382 -0.382
(<0.001) (<0.001) (<0.001)
Male -9.137 -3.624 -3.673
(0.265) (0.264) (0.264)
Age -0.534 -4.889 -4.831
(0.495) (0.451) (0.453)
Age2 0.451 0.929 0.921
(0.044) (0.041) (0.041)
School 2.852 5.276 5.271
(0.289) (0.293) (0.293)
Household Size -0.082 0.957 0.941
(0.122) (0.113) (0.113)
Mean Estimate for Random Coefficient
Log (Acre) 0.411 0.397 0.397
(0.005) (0.005) (0.005)
Ramp 13.189 13.059 13.001
(0.577) (0.574) (0.570)
Wake 0.307 0.542 0.514
(0.143) (0.147) (0.146)
Facility 7.245 6.672 6.655
(0.183) (0.174) (0.174)
State Park 1.645 1.543 1.448
(0.183) (0.187) (0.185)
o; -10.693 -10.071 -10.069
(0.034) (0.024) (0.024)
Bi 0.835
(0.027)
Dispersion Estimate for Random Coefficient
Log (Acre) 0.310 0.309 0.308
(0.004) (0.004) (0.004)
Ramp 17.321 16.907 16.793
(0.421) (0.405) (0.401)
Wake 11.439 11.385 11.398
(0.136) (0.136) (0.135)
Facility 12.481 11.258 11.278
(0.160) (0.156) (0.156)
State Park 9.903 10.248 10.262
(0.178) (0.170) (0.169)
o, 2.531 2.599 2.599
(0.021) (0.021) (0.021)
B 0.202
(0.017)

Parentheses are standard errors
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Table 3b. Parameter Estimates

Full Model Model Ry Model R,

Z; () : 0.151 0.163 0.167

(0.008) (0.005) (0.005)
Z,x D05 (6%) 0.021

(0.009)
Zy (5% -0.042 -0.048

(0.008) (0.008)
Likelihood Value -99,008.3 -99,036.0 -99,040.2

Parentheses are standard errors
Table 4. Welfare Estimates

S=04 §$=05 S=05H
Mean Predicted Trip 10.58 10.59 10.52
Mean Predicted Storm Lake Trip 0.12 0.12 0.14
After Improvement
Predicted Trip 10.60 10.61 10.61
Predicted Trip to Storm Lake 0.16 0.16 0.15
Average CV
Per Choice Occasion $0.02 $0.02 $0.02
Per Iowa Household $1.11 $1.24 $1.01
For all lowa Household® $1.27 $1.43 $1.17

 Units are million dollars.
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Chapter 5. Conclusions

The purpose of this dissertation was to improve on existing nonmarket valuation
techniques by incorporating three sources of information rarely used in the literature. Two
approaches to nonmarket valuation techniques were considered: one is dichotomous choice
referendum (DCR) format in contingent valuation studies and the other is recreation demand
model. The former is a stated preference approach and the latter is a revealed preference
approach. Prior information on (and uncertainty about) the distribution of willingness to pay
(WTP) was incorporated in chapter 2 when designing DCR surveys. Individual perceptions
regarding on environmental quality were considered (in chapter 3) and contingent behavior
data based on hypothetical environmental quality improvement was utilized (in chapter 4) in
order to investigate the impact of hypothetical water quality improvement on the recreational
demand pattern.

Chapter 2 illustrated the benefits and consequences of including prior information
(and prior uncertainty) in the design process. In general, in the case of single stage design,
the results indicate that optimal spread in the bids and the optimal number of bids points
increase with the parameter uncertainties. In addition, cost of ignoring prior uncertainty about
the parameters of WTP distribution appears to be substantial when using both the bid
function approach and utility difference approach. Using the Cameron’s (1988) bid function
approach, rather than Hanemann’s (1982) utility difference approach avoids problems
associated with the moments of the ratio of two normal variables. The use of alternative
approximations to the expected posterior WTP and alternative optimization technique are
illustrated. The normal approximation to posterior variance results are similar to those
obtained using Tierny-Kadane’s method. In addition, curve-fitting method is shown to be a
usable alternative to direct optimization routine. The curve-fitting method results illustrate a
number of important points regarding the optimal bid design. First, the expected posterior

variance (EPV) surfaces depends all of the attributes of the prior distribution; i.e., on prior
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distribution of the mean WTP and on the prior distribution for the dispersion of WTP in the
population. Second, the impact of the uncertainty regarding the mean WTP appears to be
larger than that of mean dispersion in the population WTP. Third, the EPV is relatively flat
over a wide range of optimal width values. This suggests that while it is important to
incorporate prior information in designing the optimal bid values, identifying precisely the
optimal bids is not crucial. In the case of a sequential design, utilizing curve-fitting method is
shown to be alternative way to implement the sequential design. I find that the number of
sample size for the pre-test survey and the pre-test stage optimal bids increases with the
parameter uncertainty and they are wider than those of the final survey stage. The optimal
bids at the complete survey stage shrinks as the number of sample size at the pre-test stage
increases.

The results of chapter 2 answer the frequent questions about the bid design for
researchers conducting contingent valuation surveys. The frequent questions in the single
stage design would be: 1) how many bid points should be placed; 2) how wide the spread of
bid points should be; 3) how precisely the bids should be selected; in the sequential design
case, 4) what is the optimal allocation of the sample between the pre-test and final survey?
The answers which I find in chapter 2 are: 1) a two or three point design usually suffices
even when there is substantial uncertainty about the distribution of WTP, 2) placing wider
bids is recommended when the uncertainty about mean WTP is huge, 3) due to the flat
curvature of EPV surface, precise selection of optimal bids is less important, 4) when the
uncertainty about mean WTP is huge, one third up to two third of total samples is
recommended for the pre-test survey and the optimal bids at the final stage depends on this
allocation.

In chapter 3, I find the importance of incorporating individual perceptions regarding
water quality. Individual’s day trip data collected from Iowa Lakes Survey 2003 shows that

perceptions regarding water quality appears to influence individual’s site choice decision and
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their perceptions on water quality do not perfectly align with scientist and/or EPA’s view to
water qﬁality. Correlation coefficients of mean water quality perceptions with physical water
quality measures (including EPA’s water quality index) indicates that this disparity depends
on what activities an individual participates in at the lakes where he/she visits; 1.e., water
quality perception of each individual is linked with the physical water quality measures
through individual’s activities at the lakes where they visited. Regression analysis shows that
physical water quality measures partly explain individual water quality perceptions. Repeated
mixed logit model estimation results illustrate that individual site choice decision depends
significantly on physical water quality, the water quality index and water quality perceptions.
The estimation models with perceptions included outperform the models without such
perception information. Both annual compensating variation and annual predicted trips
ignoring individual’s water quality perceptions are reduced substantially when compared to
models including water quality perception information.

The benefits of combining contingent behavior (CB) data based on hypothetical
environmental quality improvement and revealed preference (RP) data are illustrated using
the data collected from the Iowa Lakes Survey 2004 in chapter 4. Three types of day trips are
jointly modeled: actual trips in 2004, anticipated trips in 2005 under current conditions, and
contingent behavior trips in 2005 under hypothetically improved water quality. The results
from both simple summary statistics and a Repeated Mixed logit (RXL) model indicate that
survey respondents anticipate increasing their trips in response to the hypothetically
improved lakes, with a corresponding decrease in their trips to those lakes that are not
improved. While the RXL model does indicate that survey participants were less responsive
to the hypothetical water quality changes than they were to actual difference currently
existing across lakes, the differences in response were small and the implications in terms of

estimated welfare changes was small.
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