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Chapter 1. General Introduction 

I. Introduction 

Nonmarket valuation techniques are widely used to obtain welfare measures 

associated with environmental goods and services. These welfare measures are, in turn, 

important to policymakers when conducting cost-benefit analyses involving proposed 

changes to environmental amenities, such as programs to clean up nutrient contamination in 

lakes or to protect a given threatened species. The goal of this dissertation is to improve on 

existing nonmarket valuation techniques by incorporating three sources of information rarely 

used in the literature: (a) prior information on (and uncertainty about) the distribution of 

willingness-to-pay (WTP), (b) individual perceptions regarding environmental quality, and 

(c) contingent behavior data based on hypothetical environmental quality improvements. 

Consideration of each of these information sources constitutes an essay in the dissertation. 

The first essay focuses on incorporating prior information on the distribution of WTP 

when designing dichotomous choice referendum (DCR) surveys. The DCR format is a stated 

preference approach to nonmarket valuation in which survey respondents are presented with 

a hypothetical change to the environment (e.g., an improvement in water quality) and asked 

if they would vote yes on a referendum to provide this change with a given cost to them of 

$B. The bid (B) is varied across individuals in the sample, allowing the analysts to estimate 

the distribution of willingness to pay (WTP) for the change using standard discrete choice 

models (e.g., logit or probit). Two broad approaches have been employed to choose the bids 

used in discrete choice setting: the classical (or frequentist) approach and the Bayesian 

approach. The classical design approach (e.g., Kanninen, 1993) uses assumed values for the 

parameters that characterize the distribution of interest. The problem is that these are the very 

parameters the survey is seeking to estimate. Moreover, such designs typically do not take 

into account uncertainty about these parameters in the design. In contrast, the Bayesian 

design approach, much of it developed in the bioassay literature, explicitly considers prior 
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information (and uncertainty) about the distributional parameters in constructing optimal 

design (See, e.g., Tsutakawa, 1972,1980; Chaloner and Larntz; 1989). However, relatively 

little attention has been paid to Bayesian designs in the non-market valuation literature. 

Kanninen's (1991) dissertation appears to be the only study to consider Bayesian optimal 

design in contingent valuation. Much has changed in the Bayesian design literature since 

Kanninen's work in this area. 

In this first essay of my dissertation, I propose a Bayesian optimal design for use in 

DCR surveys. As part of developing the design, I incorporate three design features. First, I 

employ recently developed algorithms for computing the expected posterior variance of 

WTP, i.e., beyond the normal approximation used by Kanninen. Second, rather than relying 

on direct optimization routines (e.g., Nelder-Mead simplex, etc.), I use Miiller and 

Parmigiani's (1995) curve-fitting approach. Third, in addition to providing a single-stage 

Bayesian design, I develop an optimal sequential design in which the bid design considers 

both (a) the optimal sample allocation between a survey pre-test and final survey 

administration and (b) the optimal bid design for each stage. 

In addition to stated preference approaches, behavioral data (i.e., revealed 

preferences) can be used model recreation demand, which can in turn be used to value 

environmental goods and services. Recreation demand models link the environmental 

attributes of a recreational site and the frequency with which the site is visited to infer the 

value placed in these environmental amenities. However, they typically do not take into 

account the linkage between the physical water quality attributes and an individual's 

perceptions of them. In particular, according to a recent survey (the Iowa Lakes Survey), 

Iowa lakes are used extensively by residents for recreational boating, fishing, swimming, 

with over sixty percent of the households visiting at least one lake in 2002 and the average 

number of trips per year exceeding eight (Azevedo et al., 2003). Yet there is substantial 

concern about the water quality of these, with the USEPA designating roughly half of the 
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lakes in the Iowa Lakes Survey as being impaired (EPA Water Quality Inventory for the 

State of Iowa, 2003). This observation raises two issues as to whether individual perceptions 

regarding lake quality are consistent with the actual physical conditions and what form of 

quality attributes drives individual's site choice decision: observed physical measures or 

water quality perceptions? 

The second essay focuses on individual perceptions regarding water quality. Two 

questions emerge. First, how big is the disparity between the quality measures perceived by 

individuals and those reported by scientists? Second, which of these measures (perceptions or 

physical attributes) have a greater impact on the recreation behavior of individuals? Disparity 

in these quality measures is of interest to policymakers from the standpoint of welfare 

measure. Adamowicz et al. (1997) found that welfare estimates based on perceptual data are 

smaller than those using objective quality measures. Leggett (2002) showed the welfare 

estimates are biased if they do not properly control for the quality perception of individuals. 

In the second essay of my dissertation, I utilize detailed data on trip behavior and 

water quality assessments of lakes collected from Iowa Lakes Survey 2003, along with 

physical quality measures collected by the Iowa State University Limnologist laboratory, to 

investigate the impact of both water quality perceptions and physical measures on 

recreational lake usage. The related hypotheses, survey result, correlation coefficients and 

regression estimates linking reported water quality perceptions with trip behavior and 

physical measures are discussed in Chapter 3. A Repeated Mixed Logit Model is employed 

to estimate recreational demand and test the hypotheses. 

Finally, while recreation demand models typically benefit from considerable variation 

in the price of the good in question (i.e., the travel cost), they often have available little 

variation in the quality of the good being valued. To address this limitation, the recreation 

demand literature increasingly makes use of contingent behavior (CB) data; i.e., asking 

households how they would change their visitation patterns given a hypothetical change to 
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environmental conditions. Yet little is known as to whether the stated changes to these 

hypothetical water quality changes are consistent with how household respond to actual 

quality changes. Do they respond more to hypothetical water quality changes (e.g., with the 

hope of influencing policy change, or because they ignore their budget constraint)? 

Alternatively, do they respond less because they do not believe the changes will actually 

occurs? 

In the third essay, I measure the impact of hypothetical water quality improvements 

on recreation demand patterns using data collected from the 2004 Iowa Lakes Survey. In the 

survey, households were asked about how many trips they took in 2004, as well as how many 

trips they anticipate taking in 2005 under both current and improved water quality. I develop 

the model incorporating all three trip data sets in order to separately quantify the impact of 

hypothetical water quality improvements and test for consistency with observed household 

response to actual water quality. The model, related hypotheses, survey result are discussed 

in Chapter 4 below. Similar to the second essay, a Repeated Mixed Logit Model is employed 

to estimate recreation demand and test the hypotheses. 
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Chapter 2. Bayesian Experimental Design: Application to Contingent Valuation 

I. Introduction 

The dichotomous choice referendum format is used extensively in contingent 

valuation studies designed to estimate the value of environmental goods and services. In this 

format, survey respondents are presented with a hypothetical change to the environment (e.g., 

an improvement in wager quality) and asked if they would vote yes on a referendum to 

provide this change with a given cost to them of $5. The bid (B) is varied across individuals 

in the sample, allowing the analysts to estimate the distribution of willingness to pay (WTP) 

for the change using standard discrete choice models (e.g., logit or probit). The problem is 

that each person provides only limited information about their WTP (i.e., whether it is above 

or below the threshold B), making the choice of B's presented to survey respondents an 

important determinant of the precision with which the WTP distribution can be estimated for 

a fixed sample size. This issue is analogous to the problem in the bioassay literature, where 

dosages must be specified in medical experiments. 

Two broad approaches have been used to choose the bids in the discrete choice 

setting: the classical (or frequentist) approach and the Bayesian approach. The classical 

design approach uses assumed values for the parameters that characterize the distribution of 

interest. The problem here, of course, is that these are the very parameters the experiment is 

seeking to estimate. Moreover, such designs typically do not take into account uncertainty 

about these parameters in the design. Examples of classical design studies include Finney 

(1971), Abdelbasit and Plackette (1983), Minkin (1987) and Wu (1987). 

The Bayesian design approach, on the other hand, takes into account prior 

information (and uncertainty) about the distributional parameters in constructing optimal 

design. Key papers on such designs in the bioassay literature include Tsutakawa (1972, 1980) 

and Chaloner and Larntz (1987). They show that both the number of bids used and their 

spread increase with the uncertainty about the distributional parameters. 
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Relatively little attention has been paid to Bayesian designs in the non-market 

valuation literature. Indeed, Kanninen's (1991) dissertation appears to be the only study to 

consider Bayesian optimal design in contingent valuation. In the third chapter of her 

dissertation, she considers the utility difference model of Hanemann (1984) and a standard 

logistic distribution in developing the optimal bid design. The criterion she uses is to 

minimize expected posterior variance of WTP based on a normal approximation to posterior 

variance of WTP, essentially the same approach used by Tsutakawa (1980) and Chaloner and 

Larntz (1989). One problem with the utility difference approach used by Kanninen (1991) is 

that the median willingness to pay is the ratio of two normally distributed random variables. 

In this case, the WTP distribution does not have finite moments. In addition, Sun, Tsutakawa 

and Lu (1996) show that posterior distribution may include values substantially larger than 

those expected by the approximating distribution. 

In this chapter of my dissertation, I develop a Bayesian optimal design for use in 

contingent valuation based on bid function approach suggested by Cameron (1988). The 

advantage in doing so is that this avoids focusing on the ratio of two random parameters (as 

is the case with the utility difference approach). As part of developing the design, I 

incorporate three additional design features. First, I use alternative algorithms for computing 

the expected posterior variance of WTP, i.e., beyond the normal approximation used by 

Kanninen. Specifically, I investigate the use of Tiemy's (1986) Laplace approximation and 

Markov Chain Monte Carlo methods. Second, rather than relying on direct optimization 

routines (e.g., Nelder-Mead simplex, etc), I use Millier and Parmigiani's (1995) curve-fitting 

approach. Third, in addition to providing a single-stage Bayesian design, I develop an 

optimal sequential design in which the bid design considers both (a) the optimal sample 

allocation between a survey pre-test and final survey administration and (b) the optimal bid 

design for each stage. 

The remainder of this chapter is divided into five sections. Section II provides an 
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overview of both the utility and bid function approaches to modeling discrete choice 

referendum questions. Section III then summarizes both classical and Bayesian design 

approaches (including C- and D-Optimality and Fiducial method in the classical approach), 

alternative Bayesian design procedures, and recent developments in this area such as 

simulating the exact expected posterior variance. Results using bid function and curve fitting 

approaches in a single stage experimental design are presented in Section IV. In Section V 

describes the two-stage Bayesian design results, with concluding remark following in Section 

VI. 

II. Welfare Measures under Referendum Format 

Dichotomous choice referendum (DCR) format is a value elicitation procedure used 

extensively in the environmental area. It is the one mechanism recommended by NOAA 

panel (Arrow et al, 1993) for use in non-market valuation exercises, in part because of the 

simplicity of the question format. Subsequent research has also touted the incentive 

compatibility of this elicitation procedure (e.g., Carson, Groves and Machina, 2000). The 

referendum procedure involves first establishing the attributes of the public good or resource 

amenity to be provided under a proposed program. The respondents are then asked whether 

or not they would vote in favor of the program given a specific direct cost to them. For 

example, following by a description about hypothetical improvement of water quality in 

Storm Lake, a DCR question might ask "Would you vote 'yes' on a referendum to improve 

the water quality in Storm Lake to the level described above? The proposed project would 

cost you $B." The bid values (B) are varied across respondents. This questioning strategy is 

attractive because it generates a scenario for each consumer which is similar to that 

encountered in day-to-day market transactions. A hypothetical price B is stated and the 

respondents merely decide whether to "take it or leave it". This is less stressful than requiring 

respondents to state a specific value for the program and circumvents much of the potential 
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for strategic response bias. The drawback of the DCR format is that it provides only an upper 

or lower bound on the respondent's true valuation. 

Two basic approaches have been used to model DCR responses: the utility difference 

approach developed by Hanemann (1984) and the bid function approach developed by 

Cameron (1988). I briefly review each of these methods for welfare estimation. 

The utility difference approach assumes that an individual's utility depends upon 

whether the good in question (e.g., a water quality improvement) is provided, money income 

y, and a vector of individual characteristics, s. Let the index j denote the provision of the 

good in question, where j-1 if the good is provided and =0 otherwise. The individual's utility 

is assumed to take the form 

where e. is i.i.d. random variable capturing unobservable aspects of the individual's 

preferences. The utility function is typically assumed to be linear in income, with 

where y 0  = y  and y l  = y -B .  The individual is assumed to vote in favor of the program if 

u( j , y , s )  =  v ( j , y , s )  +  £ j ,  (1) 

U ( j ,  y ;  s )  =  a  J ( S )  +  J 3-y  J + s  j,  (2) 

u( l , y -$B- , s )  >u(0 ,y ; s ) .  (3) 

This inequality gives rise to 

a 1 ( s )  +  /3 (y -$B)  +  s 1  > a 0 ( s )  +y  +s 0  

=> a ,  ( s )  -  a 0  ( s )  -  p  B  >  s 0  -  s x .  
(4) 

Given r j  =  e 0 - s l  and a(s )  =  a ]  (s) -  a 0  ( s ) , then a "yes" vote implies that 
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Av  =  a ( s ) -J3 -B>r] .  (5) 

If the unobservables are assumed to be i.i.d. and drawn from an extreme value distribution, 

then 77 follows logistic distribution. The probability that an individual will accept a bid is 

then given by 

P l =F n  (Av) = 1 / {I + exp(-(a(s) - /? • B))} , (6) 

and the probability that he/she will not accept the offer is P0 - \-Fn (Av). Since WTP is 

defined to be amount of money that equates utilities from two states, we can write 

WTP = ̂  + ?~. (7) 

That is, WTP is a random variable with mean // = a(s ) l  J3  and variance a 1  = var(^) / /?2. 

Cameron (1988) focuses on the fact that, in the DCR question, the offered bid values 

B provide a direct threshold on the individual's WTP. Indeed, because the threshold amounts 

are varied across respondents, one is able to identify both the location and scale of the 

underlying WTP distribution. This result is obscured in the utility function approach. Instead, 

the utility theoretic approach focuses on estimating the "probability" that a respondent would 

benefit from the proposed environmental change. 

Cameron's bid function approach begins by assuming that the unobserved continuous 

dependent variable is the respondent's true WTP for an environmental quality improvement, 

W, such as water quality. The underlying distribution of W is assumed to be conditional on 

a vector of explanatory variables, s, with a mean of £(5) . In the standard binary logit model, 

we would assume that 

W t  = 5{s )  +  u i ,  (8) 
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where ui is assumed to have logistic distribution with mean 0 and scale parameters. Given a 

bid value Bt, we assume that respondents will say "yes" to the referendum question if their 

true WTP is greater than Bt. Hence 

Pr( yes )  =  Pr(Wi > fi ) 

= Pr(w,>^-^)) (9) 

= exp{ - (B;  -ô(s))/at}/[ 1 + exp{-(Bi -<5(s))/a:}]. 

For both the utility and bid function approaches, the precision with which the 

parameters of the model are estimated (for a given survey sample size) depends on the choice 

of bid values B{. This problem is the same as the optimal experimental design of dose level in 

quantal analysis in bioassay field. I review the experimental design in the following section. 

III. Experimental Design 

Much of the experimental design literature in a discrete choice setting has evolved in 

the bioassay (or dose-response field). Dose-response models are used to characterize the 

effect on laboratory animals of varying doses of a given substance or treatment. Most often, 

the effect is measured in terms of the percentage of animals that die when administered a 

specific dose. The model estimated is a probability curve (called tolerance distribution), often 

assumed to be logistic. The specific quantity of interest varies, but analysts are often 

interested in the effective dose level ( EDy ) at which y percentile of animals will respond. 

ED50, for example, would indicate the dosage level at which half of the sample would be 

expected to die. This is analogous in the non-market valuation situation where analysts are 

interested in the median WTP (i.e., the program cost at which half the population would vote 

"yes"). 

Since responses of animals are not observable before the experiment is conducted, 

parameters in the probability model of interest are not observable either. There are two 
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approaches for optimal design which vary in terms of how these unknown parameters are 

handled in the design process. The classical approach treats the parameters of interest as if 

they are known prior to the experiment; e.g., drawn from prior studies or relying on a best 

guess. On the other hand, the Bayesian approach takes into account uncertainty about the 

parameters by assigning prior distribution to them. Each of these design approaches are 

described in the following subsections. 

A. The Classical Design Approach. 

The optimal design for an experiment will, of course, depend upon the criteria or 

objective function used to evaluate the outcome of the experiment. Three criteria are 

prominent in the classical literature: D-Optimality, C-Optimality and Fiducial method. 

1. D-Qptimalitv. 

D-Optimality uses as its objective the maximization of the determinant of the Fisher 

information matrix; i.e., the negative of the expected value of the Hessian of the log 

likelihood function. The information matrix is asymptotically equivalent to the inverse of the 

covariance matrix for maximum likelihood estimators. Thus, maximizing the determinant of 

this matrix given a logistic response function corresponds, in some sense, to jointly 

minimizing the asymptotic variances of the estimators. Minkin (1987) shows that the D-

Optimal design for estimating EDS0, consists of two dosage levels ju -1.5434 • a and 

fi +1.5434 • a (where ju and a are respectively the median and standard deviation of the 

underlying response distribution), with each dosage level administered to half of the sample. 

The problem, of course, from a practical point of view is that neither // nor o is typically 

known with certainty prior to the experiment. 
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2. C-Qptimalitv. 

A C-Optimality design minimizes the variance of a function of the estimated 

coefficients. For example, consider a simplified version of the utility theoretic approach to 

model the DCR response, where a(s) = a . The corresponding median WTP becomes 

(«//?). The C-Optimal design would seek to minimize the asymptotic variance of (â I ft), 

where â and /? are maximum likelihood estimates of the model parameters. Wu (1987) 

shows that efficient estimation of the median occurs with all design points at the median 

value, i.e., a one-point design. 

3. The Fiducial Method. 

Another criterion that might be considered useful is the minimization of the length of 

the fiducial (or confidence) interval (Finney, 1978) associated with a function of the 

estimated parameters.1 Under fiducial interval criterion, the optimal design is a 2-point 

design distributed symmetrically around median of the response distribution when the sample 

size is even and a 3-point design when the sample size is odd. Kanninen (1993) shows in the 

context of DCR and the utility function approach that it is again optimal to have two bid 

points (/^-0.6105-cr,/^ + 0.6105 • a ) distributed symmetrically around the median when the 

sample size is 500.2 

B. Bayesian Optimal Design Criteria 

1. Overview 

Lindley (1972) presented a two-part decision theoretic approach to experimental 

design, which provides a unifying theory for most work in Bayesian experimental design. 

Lindley's approach involves specification of a suitable utility function reflecting the purpose 

1 The fiducial and C-Optimal designs will be equivalent when the function of interest is linear in the parameters. 
2 The fiducial designs will generally depend on the sample size. 
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and costs of the experiment. The best design is then selected to maximize expected utility. 

Specifically, suppose that design points B are selected from some set D. The response 

ou tcome  vec to r  y  f rom a  sample  space  Y  wi l l  t hen  be  obse rved  wi th  p robab i l i ty  p(y  |  B) .  

Based on y, a decision r(y) will be chosen from some set A. Thus, the problem has two 

parts: first the selection of B and then the choice of a terminal decision rule r(y) based on 

observation y. The unknown parameters are 9 and the parameter space is 0 . A general 

utility function is of the form U(r(y),0,B,y) . For any design B, the expected utility of the 

best decision is given by 

¥(5) = [max \U(B , r (y ) , e , y )p (d  |  y ,B)p (y  |  B)dGdy  (10) 

and the Bayesian solution to the experimental design problem is provided by the design B 

maximizing equation (10). In other words, Lindley's argument suggests that a good way to 

design experiments is to specify a utility function reflecting the purpose of the experiment, to 

regard the design choice as a decision problem and to select a design that maximizes the 

expected utility. 

To fix ideas, suppose that the problem at hand was one of testing a new drug. The 

decision variable, r(y), in this case might be whether to put the drug on the market, which 

will depend upon the outcomes of the drug testing. The utility function would ideally reflect 

the cost of the testing, the value of the drug if it is found to be effective and the costs 

associated with any ill effects (including death) from its use. The design points (B) could 

include both dosage levels and sample sizes. 

As in the case of classical designs, the optimal dosages (or bids in the valuation 

context) depend upon the specific criteria used (i.e., the utility function in equation 10). If, 

for example, U(•) is the expected gain in Shannon information (i.e., the Kullback-Leibler 

divergence) between the prior and the posterior distribution on the parameters of interest, 



www.manaraa.com

15 

then a Bayesian version of D-Optimality results. In this dissertation, I follow the bulk of the 

existing literature by using a squared error loss function, resulting in a Bayesian version of C-

Optimality. 

Suppose that the only quantity to be estimated is a function of the coefficient g(0) ,  

such as the median WTP for the utility theoretic model, (g(0) = a(s)/ J3), and that the 

squared error loss is appropriate. Under the squared error loss function, a design is chosen to 

maximize the following expected utility: 

= - j  f  1  a n  
Y 0 

The criterion function in equation (11) is a complex function of the bid design and, for a 

given bid design, typically requires numerical integration techniques to evaluate. Fortunately, 

two approximations to y¥2(B) have been developed in the literature based on normal 

approximations to the posterior distribution for 0. Chaloner and Larntz (1989) use 

6? | ~ = [#./(<?,#)]-'), (12) 

whereas Kanninen (1991) and Tsutakawa (1980) use 

6 \y ,B  ~  N(0 ,  H l  = [N •  1 (9 ,B)  +  V~ l  ]_1 ), (13) 

where / is the Fisher information matrix per observation, N is total number of observations in 

the sample, and V is variance-covariance matrix of the prior distribution for the parameter 

vector 0. The advantage of the specification in (13) is that the inclusion of V not only keeps 

the elements of Hx in equation (13) bounded, but also is consistent with the idea that, when 

the sample size is small, the posterior covariance matrix is not likely to differ greatly from 

V. The posterior variance V[g(9) [ y] is then approximated by the delta method using 
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(14) 

where 

(15) 

Under the normal approximation in equation (12), (0) can be approximated by 

& (#) = - Jc(&y . 7(4, a)}-' c(4)X4X9. (16) 

Similarly, under the normal approximation in equation (13), the approximation to the 

objective function becomes: 

That is, the squared error loss criterion yields a Bayesian version of C-Optimality, 

minimizing the expected posterior variance of the function of interest. Both Chaloner and 

Larntz (1989) and Tsutakawa (1980) adopted this criterion. 

2. Optimization of the Criteria Functions 

In general, choosing the optimal bid design based upon the criteria function in either 

equations (16) or (17) requires selecting the number of design levels, K, the levels themselves 

(i.e., Bk, k = 1, • • •, K ), and the number of sample points per design level nk, with 
K  

= N ? This is a complicated numerical optimization problem. In order to simplify the 
k~\ 
problem, Tsutakawa (1980) restricted the designs he considered to ones that assigned the 

same number of observations to each design point (i.e., nk = N / K), with design points 

3 The sample size, N, is assumed fixed. 

& (#)=- |c(o/ . /(#, a)+r-'} ' c(8)X9)<w. (17) 
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spaced equally around the midpoint of the distribution being estimated; i.e., 

B k  = z  +  {k - (K  + l ) l2} -w ,  (18) 

where z is the midpoint and w is the interval width. Under these restrictions, criterion 

func t ion  (17)  i s  op t imized ,  fo r  g iven  K,  wi th  re spec t  t o  z  and  w,  y ie ld ing  z  (AT)  and  w*(K) .  

Tsutakawa (1980) used a normal-gamma prior for parameters a and /? in equation (2) and 

approximated the integrals in equation (17) by combining Gauss-Hermite and Gauss-

Laguerre quadrature methods. The optimal design was then determined by examining the 

e x p e c t e d  p o s t e r i o r  v a r i a n c e  v a l u e s  f o r  v a r i o u s  t r i p l e t s  ( à T ,  Z *  ( K ) , W *  ( A T ) ) .  

Chaloner and Lamtz (1989) relaxed Tsutakawa's (1980) equally spaced design 

restriction. Instead of taking the derivative approach, Chaloner and Lamtz adopted the 

Nelder-Mead simplex algorithm that does not require derivatives and directly obtains nk 

and Bk ( k = 1, • • •, K ) for a given K. The design is then chosen that optimize the criterion on 

the smallest number of design points. In the last step, authors verified global optimality with 

directional derivative over possible value of B. 

Tsutakawa (1980) and Chaloner and Lamtz (1989) both show that optimal design gets 

wider and number of design point K increases with parameter uncertainty. Chaloner and 

Lamtz show that, while Tsutakawa's equally spaced design is 94% as efficient as non-

equally spaced design, the number of observations per design level is not necessarily same 

over design point with uniform prior on parameters. 

3. Recent developments in Bayesian Design. 

There have been a number of recent developments in the Bayesian design literature 

that are relevant to my dissertation. First, there are a number of papers that consider 

alternatives to the normal approximation in equation (12) and (13). Sun, Tsutakawa and Lu 

(1996) and Millier and Parmigiani (1995) propose the Monte Carlo simulation approach to 
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obtaining an exact evaluation of expected utility in optimal design. Sun, Tsutakawa and Lu 

(1996) compare the performance of approximation to expected utility with that of exact 

expected utility approach. They show, even though the solution to the design problem based 

on the normal approximation is generally quite accurate, the approximation to the expected 

posterior variance itself may be substantially understated. They also show that the error in the 

asymptotic expected posterior variance relative to the exact expected posterior variance 

1) increases with parameter uncertainty, 2) decreases with the number of design point and 

3) decreases with the number of observations. 

Millier and Parmigiani (1995) rely on smoothness of expected utility with respect to 

the design attributes to simplify the search for the optimal design. Specifically, they simulate 

expected utilities for a series of design points, estimate a smoothed representation of the 

expected utilities as a function of design characteristics, and then analytically derive the 

optimal design. They show that design points obtained by the smoothing method provides a 

consistent estimate of optimal design and suggest that curve-fitting method would be 

appropriate for sequential design because computation is less costly. The basic steps are as 

follows: 

Step 1 : A set of mid point and width values (z. (K) ,  w; (K) ) ,  i  =  ! , • • • ,  M  are selected from the 

set of possible designs D and design points Bt(K) are obtained from equation (18) 

for given K. 

Step 2: <j)x (Bj), or Y(#.), is obtained by Monte Carlo integration of the approximate 

posterior variance over 6. (z,, vv; ), j = 1, • • •, Ms ,where Ms is the number of Monte 

Carlo simulation, drawn from prior distribution p(61 z,.,w;) . The approximated 

posterior variance can be obtained by either Tiemey and Kadane (1986)'s method or 

the normal approximations in equation (12) or equation (13). 

Step 3: A smoothed expected utility ^>*(zj,wi \ K) is obtained by fitting <f>x (5, ) with respect 

to (z(. (K), w; (K)), i = 1, • • • ,M using a locally weighted running line smoother. 
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Step 4: The optimal design B* =  ( z* (K) ,  w*  (K) )  is determined by evaluating 

deterministically the maximum of (fi(zi,wi | K), i.e., 

( z*  (K) ,  w  (K) )  =  Max z  J f  ( z ,  w \K) .  

IV. Single Stage Design 

In this section, I focus my attention on the single-stage design in which the CVM 

survey is implemented without a pre-test phase. This is similar to what Kanninen (1991) 

considered. The two-stage design with a pre-test is considered in section V. I begin by 

reviewing and replicating the basic results obtained by Kanninen (1991) in the third chapter 

of her dissertation. Specifically, optimal classical and Bayesian bid designs are obtained 

using the utility difference model proposed by Hanemann (1984). The performance of each 

design is then compared using the expected posterior variance criterion. I then propose an 

optimal bid design approach based on Cameron's (1988) bid function representation of DCR 

responses and I use both the Muller and Parmigiani (1995) curve-fitting approach to bid 

design and alternative approximations to the expected posterior variance. 

A. Kanninen's Bayesian Designs 

Kanninen (1991) adapts Tsutakawa's (1980) two-parameter ( a ,  f t )  logit model of 

response, the normal approximation to the expected posterior variance in equation (17) 

above, and assumes a normal prior distribution for the parameter vector G =  (a ,  f i ) .  She 

advocates using a normal prior because maximum likelihood estimates of the parameter 

vector are typically available for contingent valuation based on pre-test data. That is, the 

prior distribution of the two parameters could be assumed to be distributed bivariate normal 

based on the asymptotically normal pre-test estimates. Using this set-up, she obtains the same 

results as Tsutakawa (1980) and Chaloner and Lamtz (1989); i.e., that the optimal number of 

design points and their spread increases with the prior uncertainty about the parameter vector 
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8. However, if the prior uncertainty is low, she finds the optimal design reduces to the 

standard result of a single bid point. She also develops an optimal Bayesian design for 

double-bound model to enhance parameter estimate efficiency. In the remainder of this 

section I describe the results from replicating her single-bounded design efforts. 

Kanninen maximized equation (17) for given number of design points K, ranging 

from 1 to 7 for the single-bound model with sample size N = 500. The prior means for a and 

P are set to 2.5 and 0.01, respectively. This yields a modal WTP of 250. In one set of 

examples, the prior variance of a is allowed to range from 0.1 to 2.1, while the variance of j3 

is fixed to le-6. The prior modal WTP thus has a variance ranging from 10 to 210. In a 

second set of examples, the prior variance of a is held constant at 0.1 while the prior variance 

of /? ranges from 1 .e-6 to 1,3e-5. The prior covariance is always set to 0. One reason why 

Kanninen sets the prior variance /? so low (relative to its prior mean) is to reduce the prior 

odds that /? is close to zero (and hence WTP goes to infinity). 

I replicate Kanninen's optimal bid design results when K= 2, allowing the prior 

variance of a to vary while fixing the prior variance of/?.I then compare the performance 

of Bayesian design with that of classical design. Expected utility (in this case the expected 

posterior variance of WTP) is evaluated at the C-, D-Optimality and Fiducial method design 

points shown at Table 1. 

Figure 1 plots the square root of the expected posterior variance a, = for the 

various classical criteria, i.e., i - C for C-optimal, = D for D-optimal, and = F for fiducial and 

= B for Bayesian optimal designs. The prior variance of a was allowed to range from 0.1 to 

2 .1 .  In  F igure  1 ,  t he  hor i zon ta l  ax i s  i s  the  impl i ed  p r io r  s t andard  dev ia t ion  o f  WTP ( c r W T P ) ,  

which ranges from 40 to 150. Figure 2 provides essentially the same information, but in 

terms of the cost of using the various classical designs (relative to the optimal Bayesian 

design) 
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As anticipated, the expected posterior standard deviations (s,.) are lowest for the 

optimal Bayesian designs. At <7^=40.31, si evaluated using the C-and D-Optimality, and 

Fiducial designs is 9.43, 11.44, and 9.63, respectively, while st for the Bayesian design is 

9.34. The C-Optimality criterion dominates the Fiducial method until crW]P reaches 50. The 

D-Optimality criterion is inferior to the C-Optimality until aWTP reaches approximately 100 

and is inferior to the Fiducial method until aWTP exceeds 125. 

The results in Figures 1 and 2 make sense intuitively. The Bayesian and C-Optimal 

designs employ similar objective functions both related to the variance in the estimated mean 

WTP. The difference is that the Bayesian design takes into account prior uncertainty 

regarding the mean WTP. When this uncertainty is low, the C-Optimal design does relatively 

well. However, when this prior uncertainty is high, the classical design placing all bids at a 

single point does poorly. In contrast, the classical Fiducial method uses two bids (at 

(a ± 0.61)/ P) ). At low levels of prior uncertainty, the C-Optimal design dominates. As this 

uncertainty increases, however, having some spread in the bids becomes preferable and the 

Fiducial design yields a lower value in . Similarly, the ID-Optimal design, with the bids 

spread even further (at (a ± 1.54) / (3), becomes preferable only at higher levels of prior 

uncertainty. 

So far, the results that we have seen are for when the prior standard deviation of a 

varies while the prior standard deviation of /? is held fixed. On the other hand, the results 

when the prior standard deviation of ft varies and the prior standard deviation of a remains 

fixed highlights the drawback of the utility difference approach noted above. Specifically, if 

the prior uncertainty about (3 increases to the extent that the value of /? is likely to be close 

to zero, it is then likely that the corresponding WTP becomes very large (since WTP=a / p ). 

Indeed, the moments for the prior on WTP do not exist (See e.g., Fieller, 1932; Curtiss, 1941; 

Marsaglia, 1965; Hinkley, 1969). One approach is to limit the range of prior uncertainty 

regarding the marginal utility of income (e.g., using a truncated normal prior on P ) in order 
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to get bid values for a given K. However, such limit on the variance of the parameter would 

not fully reflect the uncertainty of WTP. 

B. Bid Function Approach to Optimal Design 

In contrast to the utility difference approach, the mean WTP derived from the bid 

function approach is typically linear in the unknown parameters. In the remainder of this 

section, I consider the simplest version of equation (8) in which ô(s) = S. I derive optimal 

design points using the asymptotic approximation method and the equally spaced design 

assumption in equation (18) for N = 500. The prior distributions for S and K are assumed to 

be independent. The prior distribution of 8 is assumed to follow normal distribution with 

mean JUS and variance r2, while the prior distribution for K is assumed to be triangular 

distribution with mean mK and spread sK. The density of a triangular distribution with mean 

mK and spread sK is zero beyond the range ( /cMin, /cMax ), where /cMill ~mK-sK and 

/cMax =mK+sK, rises linearly from /cMin to mK, and drops linearly to /cMax. While the 

uniform distribution is sometimes used to model the uncertainty of a parameter (e.g., K ), it 

assumes that the parameter K is equally likely to take the values between /rMin and /cMax. In 

contrast, the triangular distribution describes the situation where the parameter K is most 

l i k e l y  t o  t a k e  t h e  v a l u e  o f  m K ,  w i t h  d i m i n i s h i n g  p r o b a b i l i t y  f o r  r e g i o n s  a w a y  f r o m  m K .  

The prior density of ( S ,  K ) is then given by the pdf for 5 e R, K  e [/cMin,  rcMax ] ,  

p ( S ,  k )  OC exp {-(<5 - )2 / 2 r 2} {[*: - /cMin ]d  + [/cMax -zc](l- d ) } ,  (19) 

where d = 1 if K e (/rMm, mK ) and d = 0 otherwise. 

The Hl matrix in equation (13) is then 

H x  = { I  +  V ~ l y l , where V  
T 2  

o ,;/6 
(20) 
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Using c(0) = (1,0)', the expected utility in equation (17) is maximized with respect to 

(z, w) as in Tsutakawa (1980). The model has four parameters defining prior distributions, 

(FIS, T, mK, sK). The value of fj.s is assumed to be equal to 250.1 consider values for r 

taken from the set {1,10, 20, 30,40, 50, 60, 70, 80, 90}, values of mK taken from the set 

{20, 30, 40, 50, 60, 70, 80} and values of from the set {5, 10, 15, 20, 30} in order to 

examine how the optimal Bayesian bid design responds to: 

• changes in the prior uncertainty about the mean WTP (i.e., changes in r) 

• changes in the mean dispersion of WTP ( m K ) ;  and 

• changes in the prior uncertainty about the dispersion of WTP in the population (i.e., 

changes in sK). 

Numerical integration of equation (17) over 8 and k is performed and the optimal values for 

(z, w) are obtained by Nelder-Mead algorithm. I also restrict my attention to a sample of 

TV = 500 and designs that are symmetric about the mean WTP. 

The results show how optimal design points respond to uncertainty in terms of the 

mean and dispersion of WTP. First, consider the case when mK = 20 and sK=5. Figure 3 

illustrates how the optimal two point design changes for the bid function approach as the 

prior standard deviation of 8 (i.e., r ) is varied. When r is equal to 1 and the analyst is 

relatively certain about the mean WTP, the optimal design degenerates to a one point design 

with all the bids placed at 250. However, as r increases above 1, the Bayesian optimal 

design points diverge away from the single-point design placing the two bids further from the 

mean WTP of 250. For example, the two-point design (common in a classical setting) puts 

the bids at 161 and 340 when r =90. 

Of course, two bids need not be optimal. Figure 4 illustrates what happens to the 

optimal bid design if we allow the number of bid points to increase up to an eight-point 

design. As the prior uncertainty regarding the mean WTP increases, it becomes optimal to 

increase both the spread of the bids and the number of bids used. With r =30, three bids 
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becomes optimal. By the time r doubles to 60, an eight point design dominates. Figure 5 

illustrates the performance of the Bayesian designs for various values of K. The 

corresponding eight-point provides an efficiency gain over a two-point design of about a 

factor of three (see Table 2). However, although placing multiple bids (K > 3) yields the 

apparent efficiency gain compared to two-point design when r is big, placing more than 

four-bid points yields little efficiency gain. Therefore, placing more bids might not be 

optimal in practice when an analyst considers the cost of the contingent valuation survey 

design (e.g., cost of printing the survey with more than four-bid points). This suggests that a 

two-or three-point design may often be sufficient in practice. 

More generally, we might want to consider how the optimal design responds to 

changes in r , sK and mK. Since K measures the population dispersion in WTP, a large mK 

corresponds to a large prior mean in the dispersion of WTP in the population, whereas a large 

sK implies the uncertainty about this dispersion. For ease of exposition, I consider only the 

two-point design case and fix the midpoint of the design at the prior median WTP (ju). In 

this case, the only design decision is the width of the design interval, w. 

Figure 6 presents the surface of optimal width w as a function of r and mK at sK 

equal to 5. The figure suggests that, for a given value of mK, the optimal design width is 

increasing with the prior uncertainty about the mean WTP (i.e., r ). However, for a given z, 

the optimal width decreases with the mean dispersion in WTP (i.e., mK ). When z = 20, the 

optimal bid width is 49. This width drops to 33 when mK= 30. For mK bigger than 30, the 

optimal width is zero. In general, the point at which the optimal bid width drops to zero 

appears to be a function of z and mK. In particular, if the ratio of z to mK (vrsz/mK) is 

less than one, the optimal width becomes to zero. However, as optimal width contour plots in 

Figures 7 to 9 illustrate, the region in the optimal width remains zero disappears as the 

uncertainty of the dispersion of WTP distribution (sK) increases. It also appears that the 
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optimal bid width has a convex relationship with respect to m K  ; i.e., the optimal width 

increases up to some m'K and decreases thereafter. 

What does this suggest? For simplicity, suppose there is no uncertainty about the 

dispersion of WTP distribution; i.e., sK= 0. For the ratio vr to be equal to one implies that the 

prior mean in the dispersion of WTP ( mK ) is equal to the uncertainty of mean WTP (r ) so 

that the WTP in the population has the same distribution as the mean WTP (S) with the 

same mean 250 and variance r2 = m2. Therefore, the posterior variance of mean WTP (<5) 

becomes the variance of WTP and the Bayesian design points becomes the C-Optimality 

design placing one bid point at the mean WTP (//5) 250. For the region where vr is less than 

one, the Bayesian bid design becomes the C-Optimal design. On the other hand, when the 

uncertainty about the dispersion of WTP distribution becomes significant, posterior variance 

of mean WTP (<?) diverges away from the variance of WTP. Therefore, there is less chance 

for the optimal bid width to become zero. 

Finally, the cost of using classical design (i.e., ignoring parameter uncertainty) is 

shown in Figure 10 for mK = 50. This cost is defined to be ratio of expected posterior 

variance of the C-Optimal design to that of Bayesian design. Expected posterior variance of 

C-Optimal design is obtained by evaluating equation (11) at C-Optimal design points (i.e., 

Bi=2?2=250). As expected, the ratio is bigger than 1 over the entire region of (f , sK) because 

Bayesian design minimizes the expected posterior variance. For sK= 5 (i.e., when the prior 

uncertainty on the dispersion of WTP distribution is low) the performances of C-Optimal and 

optimal Bayesian designs are close for all r . However, as this prior uncertainty grows, the 

B a y e s i a n  d e s i g n  p e r f o r m s  s u b s t a n t i a l l y  b e t t e r  t h a n  c l a s s i c a l  d e s i g n .  L i k e w i s e ,  f o r  g i v e n  s K ,  

the cost of using the classical design generally increases with uncertainty about the mean 

WTP (i.e., T ). The cost of using the C-Optimal design peak at sK= 25 and r =70. The cost of 

ignoring the prior uncertainty is generally substantial. 
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C. The Curve-Fitting Method Result 

In this section, I illustrate the Bayesian optimal design obtained using the curve-

fitting method recently suggested by Millier and Parmigiani (1995).4 The point of this 

exercise is to see whether the resulting optimal designs are similar to those obtained using the 

asymptotic expected utility approach and standard optimization technique.5 In addition, I 

compare optimal designs obtained by approximating the expected posterior variance using 

Tierney and Kadane's (1986) method versus using the traditional normal approximation. As 

Sun, Tsutakawa, and Lu (1996) show, even though the solution to the design problem based 

on the normal approximation is generally quite accurate, the error in the normal 

approximation relative to the exact posterior variance is substantial when parameter 

uncertainty is high. Therefore, using more accurate approximation to posterior variance 

might be crucial.6 In conducting these comparisons, I consider nine prior specifications, 

varying the uncertainty regarding the prior mean with r = {20, 50, 80} and the mean 

population dispersion in WTP with mK= {20, 30, 40}. In all the comparisons jus is fixed at 

250, the uncertainty regarding the population dispersion of WTP is fixed at sK = 5, and the 

sample size per bid is fixed at nk = 250. 

As described above, step 1 of the curve fitting approach requires the selection of a set 

of bid designs, D, to use in simulating points along the expected posterior variance function 

</>(B). In the case of symmetric two-point designs, this corresponds to specifying the set of 

p o s s i b l e  b i d  w i d t h s ,  w ; .  M i l l i e r  a n d  P a r m i g i a n i  ( 1 9 9 5 )  r e c o m m e n d  p i c k i n g  w ; ,  i  =  1 , -  •  - , M  ,  

randomly over a range of reasonable designs. I set this range to be (0,200). 

Step 2 in the curve fitting approach requires the calculation of the approximated 

4 Miiller and Parmigiani (1995) note that it is not possible to make any universal recommendations between the 
curve-fitting and standard optimization method. The choice depends heavily on specifics of the problem, such 
as computational effort involved in evaluating the utility function, required accuracy, and smoothness of 
expected utility. 
51 will refer to the latter approach as the "standard method" in the remainder of this chapter. 
6 Tierney and Kadane (1986)'s posterior variance approximation has an absolute error of order 0(n~3 )  or a 
relat ive error of  order 0(n~2 ) .  
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posterior variance for each design point. Specifically, for each bid width, w;, j = 1, • • •, Ms 

pairs j,yij) are drawn from the independent prior distribution (i.e., equation 19) and the 

binomial distribution with probability of yes in equation (9). These simulated pairs are in turn 

used to compute % (w, ) 'n equation (11). 

Step 3 in the curve fitting approach requires fitting a curve to the set of observations 

on % (w,). Following Millier and Parmigiani (1995), I use the locally quadratic regression 

surface. Since this scatter plot smoothing uses the / nearest points for each data point, 

T2 (w,.) , i = 1,- • -,M , it requires the specification of how many data points are used as the 

nearest neighbor around each of the point T2 (w, ) to fit a quadratic regression. This is called 

the "span". A larger span (e.g., 0.75) includes a 75% of the sample size around the point in 

quadratic fit (wf) and generally results in a smoother curve. In contrast, a smaller span 

(e.g., 0.25) uses a 25% of the sample size around each data point to fit \P2* (w«) » allowing for 

greater curvature in the approximating function ̂ (wi) • I consider span widths of 0.25, 0.50, 

and 0.75. 

Finally, in step 4 of the curve fitting approach, the optimal bid width (w*) can then be 

selected by finding the minimum of T2(w,). That is, one can simply sort the pair of 

( wi, Yj (w, )) in ascending order with respect to T* (vv.), yielding the minimum T* (w;) and 

corresponding optimal width w*, as I do in this analysis. 

Table 3 contains the optimal bid widths (i.e., w) using three methods: Ml) the 

standard method, M2) the curve-fitting method using the normal approximation to the 

posterior variance in equation (13), and M3) the curve-fitting using Tiemy's approximation to 

the posterior variance. Both curve fitting approaches use a span of 0.75. 

There are two comparisons of interest here. First, consider the comparison between 

methods Ml and M2; i.e., comparing the standard and curve fitting methods, both using the 

normal approximation to the posterior variance in equation (13). In this comparison, the only 

difference lies in the use of curve fitting to find the optimal bid width. As Table 3 indicates, 
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the resulting bid width values for the two methods are very similar to each other, except for 

x = 20, mK = 40. Thus, in terms of optimization method, the curve-fitting method performs 

well relative to the standard method. 

The second consideration of interest is between methods M2 and M3; i.e., comparing 

the two curve fitting methods, one using the normal approximation to the posterior variance 

and the other using Tierny-Kadane's approximation to the posterior variance. In general, we 

would expect the Tierny-Kadane approximation to be more accurate than the normal 

approximation. The bid width values at the second and the third three columns of Table 3 are 

almost same as well. This result shows that, in terms of the approximation to posterior 

variance, and given the same optimization method (i.e., curve-fitting), the normal 

approximation to posterior variance yields similar bid width values, compared to Tierny-

Kadane's approximation method. This is consistent with earlier findings in the literature. 

One thing to note is that the variation of bid values with mK is small for three 

methods while the variation of bid values with x is large. This is due to the relative flat 

curvature of expected posterior variance (EPV) surface with respect to mK. Figure 11 to 14 

show the four EPV scatter plots from curve-fitting with normal and Tierny-Kadane 

approximation, respectively. Figure 11 and Figure 13 show EPV scatter plots with mK= {20, 

30, 40} and x =50 while Figure 12 and Figure 14 show EPV scatter plots with x = {20, 50, 

80} and mK = 20. Figure 11 and Figure 13 show that as the mean dispersion of the 

population WTP distribution increases, EPV scatter plots get flatter but essentially achieve 

their minima at the same point. This results in less variation of bid values with mK. On the 

other hand, Figure 12 and Figure 14 show that as the uncertainty of mean WTP distribution 

increases, the minima of the EPV scatter plot increases resulting in large variation of optimal 

width with x . The EPV scatter plots in Figure 11 through 14 also suggest that, in some 

settings, precisely identifying the optimal bid width is not crucial. For example, with x =50 

and mK = 20, bid widths ranging from 10 to 120 yields similar EPV values (ranging from 20 
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to 40). Thus placing two bids at 240 and 260 (i.e., w-20) yields a similar expected posterior 

variance to placing two bids at 190 and 310 (i.e., w=120). In these settings, the precise 

selection of the optimal bid width is less important. It also suggests that, rather than using the 

optimal width of 102, there is little cost to using a round number, say 100. 

Finally, the curve fitting approach requires the choice of the span used to fit Yj(w). 

Table 4 shows the sensitivity of the optimal width to the choice of the span. The Tierny-

Kadane approximation results appear to be somewhat less sensitive to the span choice for all 

three spans used, the optimal widths increasing with respect to both r and mK. On the other 

hand, the optimal width from normal approximation appears to be more sensitive to the 

choice of the span. For example, optimal width is not monotonically increasing with respect 

to mK for each of three spans and this becomes apparent as span is at 0.25. When span is set 

at 0.25, 25 percent of M observations around for each data point are used to fit the curve. 

Therefore, the local variation for each observation will be kept. On the other hand, when span 

is set at 0.75, there is less variation for each observation because the variation is averaged 

out. In general, a lower span seems preferable so as to not lose the variation of expected 

posterior variance surface. 

V. Two Stage Design 

A. Solution to Sequential Design 

The results from the previous section indicate that Bayesian design techniques can 

provide substantial improvements in the expected posterior variance of the mean WTP 

obtained from dichotomous choice surveys. The standard optimization and curve fitting 

approaches yield similar results. However, one reason for introducing curve fitting 

techniques is that they can be particularly useful in a sequential design setting; i.e., when a 

survey (or experiment) is to be conducted in waves. This is commonly done in contingent 

valuation studies in which a pre-test version of the survey is administered so as to better 
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choose the bids used in the final survey mailing.7 

When an experiment is to be performed sequentially in two stages, the design for the 

second stage, upon completion of the first stage, is just a one-stage problem with the 

posterior distribution after the first stage being used as the prior for the second. The problem 

in sequential design is to choose the first stage design that will optimize the overall 

experiment in some sense. However, direct implementation of dynamic programming 

solutions are extremely computation intensive. As Millier and Parmigiani (1995) suggest, the 

curve-fitting method can be used to reduce computation time in a sequential design structure. 

In this section, I develop an optimal sequential design in which the bid design considers both 

the optimal sample distribution between a survey pre-test and formal survey administration 

and the optimal bid design for each stage under the assumption that a balanced two point 

design {K=2) is used with mid point known to be 250. The asymptotic normal approximation 

is used in computing the expected posterior variance. 

Sequentially, suppose we are conducting a contingent valuation survey with a fixed 

sample size of N. The goal is to design optimal bids for pretest and complete survey to 

estimate mean WTP, S. In order to do this, the researcher must specify the fraction of the 

overall sample ( X ) to allocate to the pre-test sample size. Thus, the sample size for the pre

test becomes N\=XN and the sample for the final implementation becomes A^=(l - X) N. 

The tradeoff here is that by allocating more of the sample to the pre-test, the uncertainty 

regarding the WTP distribution shrinks and one can better design the bids for the final 

implementation. However, in doing so, there are fewer observations left for the final 

implementation and it becomes less informative itself. 

Given X, the next stage in the design problem is to choose optimal widths w, and w2 

for each stage. Similar to previous sections, I assume equally spaced design framework. 

7 The last thing a surveyor wants is to have set the bids so huge that everyone says "no" or so low that everyone 
says "yes". 
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Usually, the solution cannot be obtained in closed form. One solution to get around this 

problem is to ignore the sequential nature of the problem. However, this would be ineffective 

in that it would ignore information obtained in stage 1 in setting the bid levels in stage 2, 

which was the very reason for conducting the pre-test. Instead, in this section I use a 

simulation based design yields to determine optimal design, conveying its inherently 

sequential nature. 

The curve-fitting based implementation of a sequential design algorithm is as follows: 

Step 1 : A set of sample portion and width values for each stage (/I., w] , w2),i = are 

selected from the set of possible designs D1 and D2 and design points B )  ( K )  and 

B2 (K) are obtained from the equation (18) for given design point, K = 2. 

Step 2: For each design point ( A,, B ]  ( K ) ,  B 2  ( K )  ) draw 9 , y x , and y 2  from the prior and 

likelihood functions respectively. Compute the approximate posterior 

variance/2(0 ,A,B2(K),y2) + (Il{6 ,A,,BX(K),yx) + V~l)~x, where /"is the Fisher 

information matrix at the stage s and V is prior covariance matrix. 

Step 3: The second stage EPV, y i ' 2 ( A i , B l
i , B 2  , y u )  m  equation (10) is obtained by Monte 

Carlo integration of the 72 (0,, 1,, B2 (^T), ) + (/' (0,, A,, #,! (AT), .y,, ) + F"' )"' over 6n 

yu(B\K),B2(K)), and y2i(B\K),B2 (K)), where M is the number of Monte Carlo 

simulations, drawn from prior distribution and likelihood functions for given design 

points. 

Step 4: A smoothed expected utility for the second stage ^ V 2 *  { À ( , B )  , B 2 , y u )  is obtained by 

fitting x¥2(AifB],Bf,yu) with respect to (A,,B) (K),B2(K)) and yu,using a locally 

weighted running line smoother. 

Step 5: The second stage optimal design B2* is determined by evaluating deterministically 

the maximum of v¥2* {B\, Bf, yu ) over D2. 

Step 6: The first stage optimal design B1* is determined by evaluating deterministically 

x¥x*(Âi,B]) = T(A,,B],B2*(Ai,B)(AT),yu),yu), which is obtained using a locally 
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weighted running line smoother. Y'* is then analytically optimized with respect to 

B ) .  

Step 7: The optimal sample portion A* is determined by optimizing deterministically 

Y0*(A,. , # / * )  =  Y( A t . , B j ' , B f * ( A j ,B x * ( K ) , y X i ) , y u ) over A,., which is obtained using a 

locally weighted running line smoother. 

B. Implementation Result 

Sequential design is implemented for r = {20, 30, 40, 50, 60, 70, 80, 90} with 

mk = 20, sk = 15 , and the number of Monte Carlo simulation M = 3,000. Scatter plot 

smoothing is conducted with the span equal to 0.75. 

Table 5 shows the optimal sample allocation ( A )  and optimal widths for the pre-test 

s u r v e y  a n d  c o m p l e t e  s u r v e y ,  r e s p e c t i v e l y ,  a t  t h e  n u m b e r  o f  M o n t e  C a r l o  s i m u l a t i o n  ( M )  

equal to 3,000. Several results emerge. First, for low levels of initial (prior) uncertainty 

regarding the mean WTP (r < 60), a relatively small proportion of the sample is allocated to 

the pre-test (typically less than 25%). However, when this prior uncertainty becomes large, 

(e.g., r > 70 ) a much larger proportion of the sample is allocated to the pre-test. However, it 

should be noted that the trade off between a small or large pre-test is a relatively close one. 

Figure 15 provides a graph of Y0*{Aj,Bx*,B2*) for the case r = 80. While A* = 73% is 

optimum, it is not much preferred to A* close to 30%. Second, optimal width at the pre-test 

survey is wider than the complete survey except for z =20.8 This makes intuitive sense as the 

pre-test is being used to provide information for the second stage. The second stage, on the 

other hand is better informed and, hence, can use a narrower bid design. As the uncertainty of 

mean WTP increases, the pre-test optimal width increases with the prior uncertainty which is 

similar result to the single stage design. On the other hand, the complete survey optimal 

8 As shown in the single stage design, the ratio of vr is equal to one so that the Bayesian optimal design 

becomes C-Optimal design. 
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width narrows down to 50 or less for r > 70. 

The sequential design illustrated above fixed the design mid points for both the pre

test and complete survey stage at 250 (i.e., jus = 250). It is natural to do this at the pre-test 

stage, since our prior mean WTP is 250. However, in some sense, it is unrealistic to fix the 

complete survey mid point at 250 because the very reason why the researcher relies on the 

sequential design is to collect information about the population mean WTP. An extension of 

the above analysis would be to optimally choose the mid point of the complete survey stage 

as a choice variable in the steps described in the previous section. For example, at step 1, one 

could also randomly draw the mid point for the complete survey from the region (e.g., 

zf g(0, 300)), with the design choice set then being(Ai, w), z],wf), i = ],-••,M . The bid 

points and Bf would obtained from the equation (8) and the rest of the steps conducted as 

described in the previous section. The implementation of the modified steps remains as one 

for further study. 

VI. Conclusion 

Optimal design in contingent valuation is a crucial step in the efficient estimation of 

the WTP for environmental goods and services. The efficient estimation of WTP is 

important, in turn, in developing environmental policies. The purpose of this chapter in my 

dissertation was to illustrate the benefits and consequences of including prior information 

(and prior uncertainty) in the design process. Both the Classical and Bayesian design 

approaches were applied to the bid function approach to modeling WTP responses from a 

dichotomous choice referendum survey. As noted above, using the bid function approach, 

rather than Hanemann's (1982) utility difference approach (as in Kanninen, 1982), avoids 

problems associated with the moments of the ratio of two normal variables. In the case of a 

single stage design, the chapter also illustrates the use of alternative approximations to the 

expected posterior WTP (i.e., the normal approximation versus the Tierny-Kadane method) 
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and alternative optimization technique (i.e., direct optimization versus curve fitting). In 

general the results indicate that 1) optimal spread in the bids increases with the parameter 

uncertainties; 2) the optimal number of bid points (K) increases with the parameter 

uncertainties; and 3) the cost of ignoring the uncertainty about the parameters of WTP 

distribution can be substantial. These results are similar to those obtained using the utility 

difference approach. In addition, curve-fitting method is shown to be a usable alternative to 

direct optimization routine; i.e., Bayesian optimal bids using the standard method are similar 

to those obtained using the curve-fitting method. In terms of posterior variance 

approximation methods, the normal approximation to posterior variance results are similar to 

those obtained using Tierny-Kadane's method. The curve fitting section also illustrates a 

number of important points regarding the optimal bid design. First, the expected posterior 

variance (EPV) surfaces depends all of the attributes of the prior distribution; i.e., on the 

prior distribution of the mean WTP and on the prior distribution for the dispersion of WTP in 

the population. Second, the impact of the uncertainty regarding the mean WTP (r) appears to 

be larger than that of mean dispersion in the population WTP (mK). Third, the EPV is 

relatively flat over a wide range of optimal width values. This suggests that while it is 

important to incorporate prior information in designing the optimal bid values, identifying 

precisely the optimal bids is not crucial. 

Finally, curve-fitting method makes it easier to implement the sequential design. I 

find that the number of sample size for the pre-test survey and the pre-test stage optimal bids 

increase with the parameter uncertainty and they are wider than those of the final survey 

stage. The width between the optimal bids at the complete survey stage shrinks as the sample 

size at the pre-test stage increases. 

Finally, the results of this chapter provide some practical guidelines to the optimal bid 

design for researchers conducting contingent valuation surveys: 

• Even when there is substantial uncertainty about the distribution of WTP, placing two 
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or three point design provides most of the gains from optimal Bayesian design. 

• Since the impact of the uncertainty about mean WTP on the optimal bids is bigger 

than that of the mean dispersion of WTP, placing wider bids is recommended when 

the uncertainty about mean WTP is huge. 

• Due to the flat curvature of EPV surface, precise selection of optimal bids is less 

important, for example, placing two bids at 240 and 260 yields similar performance 

as placing two bids at 190 and 310. This suggests that there is room for rounding in 

specifying the final bids. 

• The sequential design suggests that there is a tradeoff in the allocation of the sample 

between the pre-test and final survey and the optimal bids at the final stage depends 

on this allocation. 
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Appendix: Tables and Figures 

Table 1. Optimal Design Points for Classical Approach 

D-Optimality C-Optimality Fiducial Method 

X, (1.5434 + cc)/p a/p (0.6105+ a)/p 

*2 (-1.5434 + 0# a/p (-0.6105 + a)/p 

Table 2. Expected Posterior Variance - Bid function approach 

K-2 K= 3 K-A K=5 K=6 K=1 K= 8 Optimal K 

1 0.009 0.009 0.009 0.009 0.009 0.009 0.009 1.000 

10 0.049 0.050 0.050 0.050 0.050 0.050 0.050 2.000 

20 0.066 0.067 0.067 0.067 0.067 0.068 0.068 2.000 

30 0.087 0.084 0.084 0.084 0.084 0.085 0.085 3.000 

40 0.117 0.104 0.103 0.103 0.103 0.104 0.104 6.000 

50 0.162 0.128 0.124 0.124 0.123 0.124 0.124 6.000 

60 0.230 0.159 0.148 0.145 0.145 0.145 0.145 8.000 

70 0.333 0.198 0.174 0.169 0.167 0.167 0.167 8.000 

80 0.492 0.251 0.206 0.194 0.191 0.190 0.190 8.000 

90 0.741 0.324 0.244 0.223 0.216 0.214 0.213 8.000 
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Table 3. Curve-Fitting method results 

r 

Curve fitting 

Standard Method 
Normal Approximation8 Tierny-Kadane 

Approximation3 

mK 20 50 80 20 50 80 20 50 80 

20 49 102 157 56 100 122 59 88 101 

30 33 101 155 58 105 135 63 109 135 

40 0 91 152 62 95 139 77 115 144 

a Scatter plot smoothing is obtained using a span of 0.75. 

Table 4. Impact of the choice of span on optimal width 

r 

Normal Approximation Tierny-Kadane Approximation 

Span = = 0.50 

mK 20 50 80 20 50 80 

20 42 94 133 44 90 99 

30 43 103 131 56 110 127 

40 55 91 144 56 114 153 

Span = = 0.25 

20 51 88 146 58 88 94 

30 41 103 118 67 104 135 

40 48 96 141 71 122 159 
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Table 5. Sequential Design Implementation Result3 

x 

M 20 30 40 50 60 70 80 90 

3,000 0.30 0.14 0.16 0.19 0.23 0.72 0.73 0.73 

w\ 2 223 257 256 266 264 269 273 

w* 83 83 124 124 124 50 35 35 

a m,, and s*.are fixed at 20 and 15, respectively. 
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Chapter 3. Water Quality Perceptions and Site Choice Decisions 

I. Introduction 

According to the U.S. Environmental Protection Agency's most recent national water 

quality inventory (Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs, 

2000), 45% of the lake acres in the nation are impaired. This assessment is based on physical 

water quality measures. In Iowa, the problem is no better. Indeed, over half of the 131 lakes 

included in the Iowa Lake Valuation project are on the U.S. EPA's impaired list (EPA water 

quality inventory for the state of Iowa, 2003). 

Despite the fact that physical measures indicate water quality impairments in the 

state, these same lakes are used extensively by Iowans for recreational boating, fishing, 

swimming, etc. According to the summary report of Iowa Lake Valuation project (Azevedo 

et al. 2003), approximately 62% of all Iowa households visited one of the 131 lakes in 2002, 

with an average of about eight day-trips per year. Yet these same respondents indicated that 

water quality was the most important factor they consider when choosing a lake for 

recreation. Clear Lake in north-central Iowa is the center of many activities and is especially 

lively in the summer months despite being on the lists of impaired lakes. Fishermen, 

recreational boaters, swimmers and beach users all frequent the lake. As Ditton and Goodale 

(1973) suggests, physical water quality is not necessarily the quality that attract or deter 

recreation users. 

The question is what form of quality attributes drives individual's site choice 

decision: physical measures or quality perceptions? How do these affect trip behavior? This 

chapter of my dissertation utilizes detailed data on trip behavior and water quality 

perceptions collected from Iowa Lake Survey 2003 and physical quality measures collected 

by the Iowa State University Limnology laboratory to investigate which measures have the 
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greatest impact on the site choice decision. 

A related issue of interest is whether individual water quality perceptions are 

correlated with the available physical measures, i.e., to what extent do individual perceptions 

align with physical measures of quality? Biases in quality perceptions are of interest to policy 

makers from the standpoint of welfare analysis. If perceptions do influence recreation trip 

behavior, but these perceptions differ from the corresponding physical measures (or the U.S. 

EPA's categorization of them), the changes to the physical water quality of a lake may have 

unintended impacts of lake usage and the corresponding welfare calculations may be 

problematic. 

The remainder of this chapter is divided into six sections. Section II provides a review 

of the existing literature on water quality perceptions. Section III describes the trip behavior 

and quality assessments data collected in the Iowa Lake Survey 2003 and physical measures 

of 131 Iowa lakes collected from Dr. John Downing and his team. The repeated mixed logit 

model (RXL) to be used in the analysis is described in Section IV. Model and welfare 

estimation results are discussed in Section V and Section VI. Section VII provides 

conclusions and an outline of the remaining research associated with this essay. 

II. Literature Review 

Recent studies of recreation demand show that physical water quality measures 

significantly impact the site choice decision. Phaneuf, Herriges, and Kling (2000) estimated a 

Kuhn-Tucker model analyzing angler behavior in the Great Lakes. They include catch rates 

for particular fish species of interest as well as a toxin measure derived from the average 

toxin levels given in a study by De Vault et al. (1989). The authors find that the toxin level, a 

measure of the presence of environmental contaminants, significantly influences the 
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recreation decision. 

Egan (2003) estimates the demand for day-trips to 129 Iowa lakes using data from the 

first year of the Iowa Lakes valuation project. Included in his analysis are 11 physical quality 

measures (secchi depth, chlorophyll, nitrogen, total phosphorus, etc.) and a series of other 

lake specific characteristics (ramp, wake, facilities, state park designation etc). His results 

show that individuals do respond to physical quality characteristics in choosing where to 

recreate. Egan (2003) goes on to estimate the willingness of Iowans to pay to improve the 

physical water quality levels in the state. 

The Egan (2003) analysis, however, does not explore the crucial link between the 

physical water quality measures and individual perceptions of them. Researchers often argue 

that choices are made on the basis of perceptions. Yet, there has been relatively little use of 

perceptions of quality attributes in recreation demand modeling in the past due to the cost of 

collecting individual perception information. One of the few exceptions is Adamowicz et al. 

(1997), which examines perceptual and objective quality attribute measures in discrete choice 

models of moose hunting site choice behavior. They employed data collected from 

recreational moose hunters in Alberta, Canada including actual and perceived hunting site 

attributes (access, moose population and congestion) of hunters. Their analysis shows that the 

model with perceptual attributes of a hunting site outperforms that of an objective quality 

attribute, though only modestly. Two scenarios are considered for welfare estimation: one 

involving closure of a site and the other involving a change in perceptions to the agency's 

objective measure for those individuals who have perceptions that are lower than the target 

level. The authors find that welfare estimates obtained using the "perception" model are less 

than that from the "objective quality" model for both scenarios. This is because individuals 

are assumed to experience a welfare gain only when their perception of the site quality is 
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below the agency target. 

III. Data and Survey Results 

Two sources of data will be used in this chapter: results from the 2003 Iowa Lakes 

Survey and physical water quality measures collected by the ISU Limnology Lab. These data 

sources are described in turn in the following two subsections. 

A. The 2003 Iowa Lakes Survey 

The 2003 Iowa Lakes Survey is the second year survey in a four year study, jointly 

funded by the Iowa Department of Natural Resources and the USEPA, aimed at 

understanding recreational lake usage in Iowa and the value placed on water quality in the 

state. The survey was sent by direct mail in January of 2004 to a random sample 8,000 

Iowans, collecting information on their recreation behavior as well as their assessment of 

Iowa's 131 principal lakes. Standard follow-up procedures were used to encourage a high 

response rate to the survey (see, e.g., Dillman, 1978,2000), including a postcard reminder 

mailed two weeks after the initial mailing and a second copy of the survey mailed one month 

later. In addition, survey respondents were provided with a $10 incentive for completing the 

survey. A copy of Iowa Lake Survey 2003 is included as an appendix to this chapter 

(Appendix A). 

The survey itself has three major sections. The first section (pp. 3-7) asks respondents 

to report both how frequently they visited each of 131 lakes in the state during 2003 and to 

rate those lakes they are familiar with in terms of water quality. The 10-point water quality 

ladder (Figure 1) employed by EPA is used in this water quality assessment.9 The water 

quality ladder has been used in the past both to categorize lakes in terms of quality and in 

9 All figures and tables are in Appendix B. 
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communicating potential water quality improvements (e.g., from "boatable" to "fishable" or 

"drinkable"). The second section of the survey (pp. 8-9) consists of dichotomous choice 

referendum questions and is not used in this essay. Section three, (pp. 10-11) collects socio-

demographic information, including age, gender, education, etc. 

A total of 5,281 surveys have been returned. Allowing for the fact that 219 surveys 

were undeliverable and 61 individuals were deceased, this corresponds to a 68% response 

rate. From the 5,281 completed surveys, the final sample of 5,052 individuals was obtained 

as follows. Non-Iowans were excluded (47 observations) based on zip code. Anyone 

reporting more than 52 total single day trips to the 131 lakes were excluded as well (182 

observations). The analysis below focuses on single day trips only in order to avoid the 

complexity of modeling multiple day visits. Defining the number of choice occasions as 52 

trips per year allows one trip to one of the 131 Iowa lakes per week. While the choice of 52 is 

arbitrary, it seems a reasonable cut-off for the total number of allowable single day trips for 

the season. Invariably some of the respondents who recorded trips greater 52 did in fact take 

this number of trips. However, since this survey was randomly sent out to Iowan, some of the 

recipients live on a lake and it may be those individuals who record hundreds of "trips" are 

simply returning to their sleep of residence. 

Table 1 lists the summary statistics for trips and the socio-demographic data. The 

average number of total single day trips to all 131 lakes is 6.97, ranging from zero to 52 trips 

per year. The survey respondents are more likely to be older, male, have a higher income, 

and be more educated than the general Iowa population. Schooling is entered as a dummy 

variable equaling one if the individual has attended or completed some level of post high 

school education. 

As indicated above, water quality assessment data were collected by directly asking 
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the respondents to assign a number between 0 and 10 based on the water quality ladder 

(Figure 1) for the lakes they visited in 2003 or considered visiting recently. The water quality 

ladder, proposed by Carson and Mitchell (1983), was pictured page by page on the survey 

with verbal descriptions. The top of the water quality ladder stands for the best possible 

quality of water, while the bottom of the ladder stands for the worst. The lowest level is so 

polluted that contact with it is dangerous to human health. Water quality that is "boatable" 

would not harm an individual if they happened to fall into it for a short time while boating or 

sailing. Water quality that is "fishable" is a higher level of quality than "boatable". Although 

some kinds of fish can live in boatable water, it is only when water is "fishable" that game 

fish like bass can live in it. Finally, "swimmable" water is of a high enough quality that it is 

safe to swim in and ingest in small amounts. 

The summary statistics for day trips (per capita) and median, mean, and standard 

deviation of the water quality perception for the lakes are listed in Table 2. The sample size is 

131 lakes. Total day trips per lake is divided by the total number of surveys sent out to the 

local zone where a lake is located in order to standardize population size effect on trips. On 

average, Iowans took 0.36 trips per capita to each lake last year. 

Although some individuals perceived that some of lakes were polluted dangerously, 

most respondents perceived the 131 lakes to be safe for swimming and boating on average. 

The mean water quality assessment ranges across lakes from 4.11 to 6.81. The standard 

deviation of the water quality assessment of a lake measured across individuals who rated the 

lake ranges from 1.06 to 2.42. This suggests that for some lakes, individuals share very 

similar perceptions regarding the lake's quality. For example, for Green Castle Lake 

(Marshall County), the standard deviation of water quality perceptions is 1.07 across 35 

respondents. For other lakes, such West Lake (Osceola) with a standard deviation of 2.63 
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across 62 respondents, the water quality perceptions are wide ranging. 

An initial question regarding the lake perceptions data is whether or not it influenced 

which lakes Iowan visited in 2003. To investigate this, Table 3 lists the number of day trips 

per capita to the 20 best and 20 worst lakes sorted by their mean water quality assessments. 

Although some lakes had few respondents assessing their water quality, the mean number of 

day trips to the "best" lakes (with a mean assessment of 6.46) is roughly two and a half times 

the mean number of trips to the "worst" lakes (which had a mean assessment of 4.89). The 

best lakes, of course, do not have uniformly higher visitation rates. Ottumwa Lagoon 

(Wapello), Lake Macbride (Johnson), Swan Lake (Carroll) and George Wyth Lake (Black 

Hawk) in the "worst" lakes category all have higher visitation rates than Lake Wapello and 

Little River Watershed Lake included in the "best" lakes category. More detailed analysis 

will be required to tease out other factors influencing recreational site choices, such as 

proximity to population centers. However, these aggregate data do suggest that water quality 

perception likely influences the site choice decision. 

It should also be noted that high quality assessments do not necessarily imply that the 

lake is less contaminated (based on actual physical water quality measures). According to the 

list of impaired lakes of Iowa, Lake Meyer, Lake Keomah, Lake Smith, and Lake Icaria are 

impaired, even though they have high mean quality assessments. Moreover, four lakes 

among the worst assessed lakes, including Mitchell Lake, Meyers Lake, Briggs Woods Lake 

and George Wyth Lake are not on the list. This implies that individual's perceptions may not 

agree with either EPA or physical water quality assessments.10 Correlation coefficients of 

mean water quality assessment with the number of day trips and physical water quality 

10 Of course, factors other than physical water quality conditions may play a role in listing a lake on the 
impaired water quality list. 
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measures are calculated in the following subsection. 

B. Physical Quality Measures 

Table 4 lists the summary statistics of physical water quality measures. Secchi depth 

is a measure for clarity of water surface indicating how far down into the water an object 

remains visible. Chlorophyll is an indicator of plant biomass or algae and leads to greenness 

in the water. Total phosphorus is usually the principal limiting nutrient in Iowa lakes, 

meaning its levels most likely determines algae growth. Three nitrogen levels are provided, 

including NH3+NH4 (measuring particular types of nitrogen such as ammonia which can be 

toxic), NO3+NO2 (measuring the nitrates in the water), and total nitrogen. Silicon is 

important to diatoms which extract it from the water to use as a component of their cell walls. 

Diatoms, in turn, are a key food source for marine organisms. The acidity of the water is 

measured by "pH" with levels below 6 or above 8 indicating unhealthy lakes. Alkalinity is 

the concentration of calcium or calcium carbonate in the water. Plants need carbon to grow 

and all carbon comes from alkalinity, therefore alkalinity is an indication of the abundance of 

plant life. IS S is the inorganic suspended solids, basically soil and silt in the water due to 

erosion. VSS is volatile or organic suspended solids, both measures that will decrease clarity 

in the water. 

It is evident that considerable variation in physical water quality characteristics is 

present across the lakes in Iowa. For example, Secchi depth varies from a low of 0.17 meters 

to a high of 8.10 meters and total phosphorus varies from 17 to 384 n g/L, some of the highest 

concentrations in the world. All of the physical measures are the average values for the 2003 

season. Samples were taken from each lake three times throughout the year, in spring/early 

summer, mid-summer, and late summer/fall, to include seasonal variation (for more detail on 

this data collection procedures see http://limnology.eeob.iastate.edu). 

http://limnology.eeob.iastate.edu


www.manaraa.com

58 

According to EPA's "Nutrient Criteria Technical Guidance Manual (2000)", the four 

paramount variables for nutrient criteria are total phosphorus, total nitrogen, chlorophyll, and 

Secchi depth. Scientists consider inorganic suspended solids and organic suspended solids to 

be crucial indicators as well. The question is, how close are the perceptions of individuals 

and physical measures of EPA's and/or scientists? Further, do EPA's water quality index 

and/or scientist's water quality index explain water quality perception? 

EPA's water quality index used in the water quality ladder is a weighted average of 

up to nine quality indices based on physical quality measures including total phosphates 

(PO4), total nitrates (NO3), total suspended solids, dissolved oxygen and pH. A water quality 

index using the latter five variables is constructed using data from the ISU limnology lab.11 

In addition, Carson's Trophic State Indices (CSTI) for lakes based on Secchi depth 

(CTSI SEC), chlorophyll (CTSI Chla), total phosphorus (CTSI TP) are provided from the 

ISU Limnology Lab.12 As described in Appendix D, a trophic state index is an objective 

standard of the trophic state of any body of water whereas the water quality ladder index 

represents a subjective judgment by a group of scientist. 

Table 5 lists correlation coefficient of quality assessment with several physical 

measures, EPA's water quality index and Trophic State Indices. The correlations are 

provided for the sample as a whole and for two subsamples: those reporting that they 

engaged in water contact activities (e.g., swimming and jet skiing) and those who did not 

(e.g., nature appreciation and picnicking). One might expect those engaged in water contact 

activities might be more aware of and/or affected by the physical water quality conditions. 

For the sample as a whole, day trips were found to be positively correlated with the 

11 Appendix C provides details regarding the construction of these water quality indices. 
12 For details about Carson's Trophic State Index, see Appendix D. 
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corresponding water quality perception measure. This suggests, as indicated by Table 3, that 

overall quality perceptions do influence trip behavior. The overall water quality assessments 

also are generally consistent with the actually physical water quality measures. Specifically, 

all of the physical measures are negatively correlated with the mean water quality assessment 

except for secchi depth; clarity of the water has a positive relationship with the water quality 

ladder assessment (0.351). However, the degree of correlation varies by the physical water 

quality measure. For example, there is relatively little correlation between the water quality 

assessment and nitrates, chlorophyll or pH. Water quality perceptions also appear to be 

correlated with a number of existing water quality indices based on physical water quality 

measures. EPA's water quality index is positively correlated with water quality perceptions. 

The various CTSI, as expected, consistently have negative correlations with water quality 

perceptions, since lower CTSI's correspond to higher levels of water quality. This indicates 

that EPA's and scientists' measures of water quality are at least partly consistent with 

individuals' water quality assessments. At the same time, it is important to note that these 

correlations are by no means perfect. The correlation between the water quality perceptions 

and the water quality index (both of which use the water quality ladder) is just over 0.21. A 

number of single water quality measures have higher correlations with the water quality 

perceptions, including secchi depth, ISS, and VSS. The CTSI SEC index fairs somewhat 

better, but still has a simple correlation coefficient of only -0.357. 

The relationship between the physical measures and the overall water quality 

perceptions also appears to vary by the type of activity engaged in at the lakes. About one 

third of the households in the sample did not participate in water body contact recreation. As 

Ditton and Goodale (1973) suggested, water quality perceptions might be not the same over 

all respondents. Most recreation users participate in boating (43%), fishing (52%) and 



www.manaraa.com

60 

swimming (40%). Non-participants in water contact recreation enjoy camping (30%), 

picnicking (43%), and nature appreciation and viewing wildlife (42%). Overall, 3,619 

visitors participated in water contact recreation, whereas 1,433 did not. 

The mean assessment of the water contact group is more highly correlated with day 

trips (0.257) than for the non-contact group (0.047). Because they are more likely to 

participate in boating, swimming, and fishing activity on the lake, higher quality assessment 

would lead to more trips to lake. They are apparently aware of the levels of total nitrogen, 

phosphorus and suspended solids, or at least their visible impacts. All of the correlation 

coefficients are statistically different from zero at a 10% level except for the nitrates, 

chlorophyll, and pH. On the other hand, for individuals who want to take a walk along the 

beach at a lake, ride a bike or simply appreciate the lake's natural surroundings, the water 

quality itself may not impact them as much or they may have less direct contact with the 

water in constructing an overall water quality prerception. For these households, the 

correlation coefficient of day trips and most of physical quality measure (except for total 

phosphorus, nitrogen, silica and inorganic suspended solids) are not statistically different 

from zero.13 

These simple summary statistics concerning water quality assessments and physical 

quality measures data again suggest that there is a linkage, though imperfect, between 

individual water quality perceptions and the actual physical measures collected by scientists. 

However, the linkage also appears to depend upon the recreator's activities. Recreators' 

activities influence on their site choice decision and their types of activities might in turn 

impact their water quality perceptions. For example, if individuals prefer jet skiing or boating 

13 Of course, the sample size is also smaller for this group, which will impact the precision with which the 
correlation coefficients are estimated. 
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to walking around the lake, they may choose a lake where motorized vessels are allowed or 

one with a boat ramp, regardless of the water's visibility. The question is whether or not 

these facilities characteristics in turn end up impacting the individual's water quality 

assessment. To investigate this, the lake site characteristics were obtained from the Iowa 

Department of Natural Resources. Table 6 provides a summary of these site characteristics. 

As Table 6 indicates, the size of the lakes varies considerably, from 10 acres to 19,000 acres. 

Four dummy variables are included to capture different amenities at each lake. The first is a 

"ramp" dummy variable which equals one if the lake has a cement boat ramp, as opposed to a 

gravel ramp or no boat ramp at all. The second is a "wake" dummy variable that equals one if 

motorized vessels are allowed to travel at speeds great enough to create wakes and zero 

otherwise. About sixty-seven percent of the lakes allow wakes, whereas thirty-three percent 

of lakes are "no wake" lakes. The "state park" dummy variable equals one if the lake is 

located adjacent to a state park, which is the case for 39 percent of the lakes in our study. The 

last dummy variable is the "handicap facilities" dummy variable, which equals one if 

handicap amenities are provided, such as handicap restrooms or paved ramps. A concern may 

be that handicap facilities would be strongly correlated with the state park dummy variable. 

However, while fifty of the lakes in the study are located in state parks and fifty have 

accessible facilities, only twenty six of these overlap. 

The correlation coefficient of the boat ramp dummy variable with mean water quality 

perceptions is positive and significant for water contact group whereas it is insignificant for 

the non-water contact group. The disability facilities and state park dummy variables both 

have positive correlation coefficients with water quality perceptions. However, these 

correlations are insignificant at a 5 percent critical level with p-values ranging from 7 to 10 

percent. Acreage of a lake has a positive correlation with the water quality perception, 



www.manaraa.com

62 

although it is not significant. These results suggests that individual's water quality 

perceptions are somewhat correlated with the lake site characteristics, with the boat ramp 

characteristic having the clearest effect.14 

In order to investigate the linkage between water quality perceptions and physical 

water quality measures and/or site characteristics, I ran a simple linear regression of mean 

perceptions on physical measures and site characteristics. Some physical measures are 

logarithmically transformed (e.g., Chlorophyll, total phosphorus, total nitrogen, total and 

cyano-bacteria), whereas others (Secchi depth, the nitrogen, silica and alkalinity) are entered 

linearly according to Egan et al. (2004). Dissolved oxygen, total nitrates, pH, suspended solid 

and turbidity are transformed to quality indices according to McClelland (1974) on which 

EPA's water quality index is based.15 Finally, five lake-characteristic variables (log 

transformed acres and the ramp, wake, state park and wake dummy variables) are entered. 

All variables are normalized using their respective standard errors in order to compare the 

size of the impact. The estimated coefficients are listed in Table 7. Overall, these physical 

measures and lake characteristic variables explain about 39% (adjusted R2) of the variation in 

water quality perception's and the model appears to be significantly explaining the 

perceptions (the F-value of the null hypothesis of all coefficients are zero is 3.93 with a p-

value of less than 0.01). Secchi depth, log transformed chlorophyll and total phosphorus, 

alkalinity and square and linear terms of dissolved oxygen quality index and the square term 

of total suspended solid quality index are significant at the 10% level. The signs of these 

terms are generally as one would expect except for the turbidity quality index. Also, the boat 

14 It should be noted that the causation may run in the other direction in the case of lake attributes. For example, 
boat ramps and lake facilities may be constructed at a lake site because they are generally of high quality and 
the demand for such facilities is there. 
15 See Appendix C. 
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ramp and wake dummy variables appear to be significant and have a positive effect on water 

quality perception. The result supports the evidence of a relationship between water quality 

perception and the physical measures and site characteristics. 

There are two competing hypotheses regarding the role of perceptions and physical 

water quality measures in determining recreation demand. The first assumes that physical 

measures influence site choices indirectly by influencing an individual's overall perception 

of each lake, whereas the second suggests the physical attributes influence behavior in a 

complex fashion that cannot be captured by a single index or water quality ladder. Of course, 

there is also the possibility that neither have a significant impact on lake usage, which may 

be driven instead by other site characteristics such as facilities and proximity to population 

centers. To investigate these alternatives, I consider a model of the utility derived from 

visiting site j on choice occasion t that nests both of these alternatives. Specifically, suppose 

that the utility of individual i associated with visiting site j visit on choice occasion t is given 

where V is the deterministic component of utility and s.Jt is an error component which is an 

iid extreme value random variable. The vector si consists of socio-demographic 

characteristics, while Pi} is the travel cost from each Iowan's residency to each of the 131 

lakes as calculated using PCMiler. Z. represents observable water quality attributes for lake 

IV. Model 

by 

(1) 



www.manaraa.com

64 

j. Qj denotes the overall water quality perception regarding lake j and Xj denotes other site 

characteristics (including lake facilities and state park designation). Notice that the 

parameters on the lake attributes ( yi ) and ai are allowed to vary across individuals, allowing 

for heterogeneity of preferences. Specifically, these parameters are assumed to be distributed 

randomly across individuals in the population. The random parameter at was introduced by 

including a dummy variable Dj which equals one for all of the recreation alternatives 

(J = 1,- • - , J) and equals zero for the stay at home option ( j - 0), following Herriges and 

Phaneuf (2002). 

The random coefficient vectors for each individual, y. and <%. can be expressed as the 

sum of population means y and â, and individual deviations from the means, xi and (j)i, 

which represents the individual's tastes relative to the average tastes in the population (Train, 

1998).16 Therefore, we can redefine 

y t - y  +  r; and 

at =a +<pr 
(2) 

The partitioned utility function in (1) is then 

7 = 0 
(3) 

where 

(4) 

16 Specifically, I assume that y; ~ N ( y ,  2) where £ is a ( k  x k )  diagonal variance covariance matrix with 
d iagonal  e l ement  cr^  for  the  k i h  s i t e  character i s t i c .  S imi lar ly ,  a t  ~  N ( a , a ^ ) .  
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is the unobserved portion of utility. This unobserved portion is correlated over sites and trips 

because of the common influence of the terms r, and <f>i, which vary over individuals. For 

example, an individual with a large negative deviation from the mean of as will be more 

likely to choose the stay-at-home option on each choice occasion, the (j)i capturing in this 

case some unobserved attribute of the individual causing them to prefer staying at home (e.g., 

they cannot swim or do not like fishing). On the other hand, someone with a large positive 

deviation fa will tend to take many trips. The variation in the y, 's allows the marginal effects 

of site characteristics to vary across individuals. The random parameters yi and at do not 

vary over sites or choice occasions. Thus, the same preferences are used by the individual to 

evaluate each site across time periods. Since the unobserved portion of utility is correlated 

over sites and trip choice occasions the familiar IIA assumption does not apply. 

Given that the sijt 's are assumed to be iid extreme value, the resulting model 

corresponds to McFadden and Train's (2000) mixed logit framework. A mixed logit model is 

defined as the integration of the logit formula over the distribution of unobserved random 

parameters (Revelt and Train, 1998). Let the vector of random parameters in the model 

defined above be denoted by COI = (#,,/,) and let £ = (P,8,À,K) denote the fixed parameters. 

If the random parameters, a>i, were known then the probability of observing individual i 

choosing alternative j on choice occasion t would follow the standard logit form 

• (5) 

^exp[V!kl(co,^)] 
k=0 

Since the are unknown, the corresponding unconditional probability, PIJT (#,£) is obtained 

by integrating over an assumed probability density function for the (Oi's. The unconditional 
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probability is now a function of 6, where 0 represents the estimated moments of the random 

parameters.17 This repeated Mixed Logit model assumes the random parameters are iid 

distributed over the individuals with 

P„(9,Ç) = \ e )da, (6) 

where /{coi \ 6) is the assumed distribution for the random parameters. No closed form 

solution exists for this unconditional probability and therefore simulation is required for the 

maximum likelihood estimates of 0.18 

Two hypotheses are of interest. The first hypothesis of interest is H\ : /? = 0, i.e., 

whether or not physical quality measures directly impact the utility of visiting a given site 

(beyond what is captured by the perceptions variable). The second hypothesis of interest is 

H* :S = 0; i.e., whether or not the perceptions regarding water quality at the lake, based on 

USEPA's water quality ladder, influence individual household behavior (beyond what is 

captured by direct physical water quality variables). Egan (2003)'s model is the restricted one 

based on this second hypothesis. Adamowicz et al. (1997) compared two restricted models 

and estimated WTPs: one is the model under the hypothesis 1 (using perceptual data only) 

and the other one is under hypothesis 2 (using physical quality data only). The advantage of 

the current work is that we have a much more extensive list of physical water quality 

measures and perceptions data for a larger set of site alternatives. 

One issue in using the water quality perceptions data in modeling site choice is that 

we do not have data on this water quality perception for each individual and lake 

17 In the current model, 0  =  ( y , c c , i Tyl, • • •, <7^, cra ) 
18 Train (2003) describes simulation methods for use with mixed logit models, in particular maximum simulated 
likelihood which I employ. Software written in GAUSS to estimate mixed logit models is available from 
Train's home page at http://elsa.berkelev.edu/~train. 

http://elsa.berkelev.edu/~train
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combination. This is similar to the problem associated with catch rate data in standard 

recreation demand models; i.e., because a household only visits a limited number of lakes, 

individual catch rate information is typically only available for these visited lakes. Moreover, 

the catch rates information itself is endogenous. Following the standard procedure used in 

case of catch rate, the mean water quality assessment of a lake is used as a proxy variable for 

water quality perception in this model because some lakes have a few visitors and 

respondents providing water quality assessments. 

V. Estimation Result 

A. Specification 

Although the model for testing the null hypothesis and welfare estimation is set in 

equation (1), the functional forms to be useful for the physical water quality measures, lake 

characteristics and socio-demographic variables are unknown. Economic theory provides 

little or no guidance in terms of these choices. Egan et al. (2004), however, provides an 

extensive investigation into the choice of functional form for water quality measures, lake 

characteristics and socio-economic variables in their model of recreation demand. 

Specifically, using data from the first year of the Iowa Lakes survey, they split the available 

sample into 3 subsamples, using the first for specification search, the second for estimation 

and the third for investigating out-of-sample predictions. They focused on modeling the role 

of water quality characteristics in determining recreation demand patterns, holding constant 

the manner in which both socio-demographics and other site characteristics impact 

preferences. The specification search process involved comparing numerous combinations of 

linear and logarithmic forms for the water quality measures. In the analysis below, I follow 
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Egan et al. 's (2004) final specification for the physical measures, lake characteristics and 

socio-demographic variables. 

Socio-demographic characteristics are assumed to enter through the "stay-at-home" 

option. They include age and household size, as well as dummy variables indicating gender 

and college education. A quadratic age term is included in the model to allow for 

nonlinearities in the impact of age. Site characteristic are included with random coefficients. 

This is to allow for heterogeneity in individual preferences regarding site characteristics, 

such as wake restrictions and site facilities. For example, some households may prefer to visit 

less developed lakes with wake restrictions in place, while others are attracted to sites 

allowing the use of motorboats, jet skis, etc. It is assumed that the random parameters yi are 

each normally distributed with the mean (yk) and dispersion ( cr^ ) for each parameter. 

Physical water measures (Zy) are categorized into five groups 1) Secchi depth, 

2) Chlorophyll, 3) Nutrients (Total nitrogen and Total phosphorus), 4) Suspended solids 

(Inorganic and Organic) and 5) Bacteria (Cyanobacteria and Total). The first four 

characteristic groups directly impact the visible features of the water quality, making it more 

likely that households respond to them. Bacteria is included because surveyed households 

report it to be the single most important water quality concern (Azevedo et al, 2003). Egan 

et al. 's (2004) specification search results suggested bacteria, Chlorophyll, and nutrients 

enter logarithmically and the remaining variables enter linearly. This model is referred to as 

Model A. A more complex model, including pH, alkalinity, silicon, nitrates, and ammonium 

nitrogen is referred to Model B. These additional variables are entered in a linear form, 

except for pH for which is a quadratic term is also included. 

A total of seven models are considered. The first four represent variations on models 

A and B in Egan et al. (2004): 
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Model Ai : Model A as estimated in Egan et al. (2004) 

Model A?: A, plus the water quality perceptions variable 

Model Bi: Model B as estimated in Egan et al. (2004) 

Model B2: Bi plus the water quality perceptions variable. 

In terms of equation (3), the difference between models A; and A2 (Bi and B2) is that A, (Bj) 

constrains S = 0, allowing a test of hypothesis Hi. I include also three models to illustrate 

the consequences of relying on a single measure of water quality, in this case one that is 

widely used by the U.S. Environmental Protection Agency: 

Model C,: Model A\, but replacing all physical water quality measures 

with the single water quality ladder index. 

Model C2: Model A2, but replacing all physical water quality measures 

with a single water quality ladder index. 

Model C3: Model A2 with the physical water quality attributes constrained 

to have no impact (i.e., /? = 0 in equation 3). 

Note that it is the comparison of models A\ and C3 that provides the basis for testing 

hypothesis H\ (i.e., that only the perceptions index matters). 

B. Estimation Result 

The resulting parameter estimates are presented in two Tables, 8a and 8b. Table 8a 

lists parameter estimates for socio-demographic variables and mean and dispersion 

parameters for random coefficients for lake amenities data. Most of the coefficients are 

significant at the 5 percent level, except for inorganic suspended solids for Model B% and B2 

and some of the socio-demographic data including age, age square and school dummy 

variables. The age variable is not significant for Model At, Bi, B2, and Ci, while the age 
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square variable is not significant for Model A2. The school variable is insignificant in Model 

Ai,but significant in the others. Note that the socio-demographic data are included in the 

conditional indirect utility for the stay-at-home option. Therefore, larger households are all 

more likely to take a trip to a lake. Age has a convex relationship with the stay-at-home 

option and therefore has a concave relationship with trips. For Model C2 and C3, the peak 

occurs at about age 48, which is consistent with the estimate of larger households taking 

more trips, as at this age the household is more likely to include children. Higher-educated 

individuals appear to be more likely to stay-at-home, with corresponding positive coefficients 

on the school variable. The price coefficient is negative as expected and virtually identical in 

all seven models. 

Turning to the site amenities, all of the parameters are of the expected sign. As the 

size of a lake increases, has a cement boat ramp, gains handicap facilities, or is adjacent to a 

state park, the average number of visits to the site increases. Notice, however, the large 

dispersion estimates. For example, in Model A, the dispersion on the size of the lake 

indicates almost all people prefer bigger lakes. The large dispersion on the "wake" dummy 

variable seems particularly appropriate given the potentially conflicting interests of anglers 

and recreational boaters. Anglers would possibly prefer "no wake" lakes, while recreational 

boaters would obviously prefer lakes that allow wakes. It seems the population is roughly 

split, with 62 percent preferring a lake that allows wakes and 38 percent preferring a "no 

wake" lake. Lastly, the mean of ai, the trip dummy variable, is negative, indicating that on 

average the respondents receive higher utility from the stay-at-home option, which is 

expected considering the average number of trips is 7 out of a possible 52 choice occasions. 

The physical water qualities and mean perception coefficients are reported in Table 

8b. For four models, the effect of Secchi depth is positive, while inorganic (volatile) 
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suspended solid have a negative impact, indicating that respondents strongly value water 

clarity. However, the coefficients on chlorophyll and volatile suspended solids are positive, 

suggesting that on average respondents do not mind some "greenish" water. The negative 

coefficient on total phosphorus, the most likely principal limiting nutrient, indicates that 

higher algae growth leads to fewer recreational trips. Total nitrogen having a positive 

coefficient is consistent with expectations given the negative sign on total phosphorus. With 

such large amounts of phosphorus in the water, more nitrogen can actually be beneficial by 

allowing a more normal phosphorus-to-nitrogen ratio. Two other forms of nitrogen, 

NO3+NO2 and NH3+NH4, are negative. Continuing with the additional measures in Model B, 

alkalinity has a positive coefficient, consistent with alkalinity's ability to both act as a buffer 

on how much acidification the water can withstand before deteriorating and as a source of 

carbon, keeping harmful phytoplankton from dominating under low CO2 stress. Since all of 

the lakes in the sample are acidic (i.e., pH greater than seven), a positive coefficient for 

alkalinity is expected. The positive coefficient on silicon is also consistent since silicon is 

important for the growth of diatoms, which in turn are a preferred food source for aquatic 

organisms. pH is entered quadratically, reflecting the fact that low or high pH levels are signs 

of poor water quality. However, as mentioned, in our sample of lakes all of the pH values are 

normal or high. The coefficients for pH show a convex relationship (the minimum is reached 

at a pH of 8.3) to trips, indicating that as the pH level rises above 8.3, trips are predicted to 

increase. This is the opposite of what I expected. 

The water quality perception has a positive and statistically significant impact in both 

models A2 and B2. Entering the mean perception to models Ai and Bi does not change the 

signs or general size of the physical water quality measures. The coefficients on water quality 

perceptions indicate that lakes which have higher mean perception are more likely to be 
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places where individuals want to visit, as expected. Clearly, the hypothesis Hi that the 

physical water quality measures above capture the full impact of water quality on the 

household's trip patterns can be rejected. Water quality perceptions, as captured by Qj, also 

significantly affect where people choose to recreate. However, it is also clear that the 

perceptions index is an incomplete measure of how water quality affects household behavior. 

Comparing models A, or Bi to model C3, we clearly reject the restriction ft = 0 (//,' ).19 

VI. Welfare Estimation 

The results of the previous section indicate that water quality impacts individual 

recreation decisions in a complex fashion and that individual perception measures may be 

useful in explaining such site choice decisions. The question then is whether excluding such 

perceptions information significantly biases the estimated welfare implications of water 

quality improvements. To simplify the discussion, I focus my attention on the results of 

model Ci and C2 in which the physical water quality measures are summarized using the 

water quality ladder index used by the USEPA, which ranges from 1 to 10. The problem 

from a policy point of view is that a proposed water quality improvement may move a lake 

from "boatable" (with an index of 3.5) to "swimmable" (with an index of 7) based on the 

physical attributes of the lake, but not be perceived by individuals as being as big of a 

change, perhaps moving the lake from "boatable" to only "fishable" (with an index of 5). 

Welfare calculations based only on the direct physical measures may miss how individuals 

perceive such water quality changes.20 In some sense, the model employing only the water 

19 The corresponding likelihood ratio test statistics is %2 = 82 (p-value < 0.001) for model A whereas % 2  = 5 0  

(p-value < 0.001) for model B. 
20 The bias could, of course, move in the other directions, with households perceiving bigger changes than 
actually occur based on the physical water quality measures. 
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quality index (Model Ci) is from the physical scientist's (and typically the policymaker's) 

perspective. Model C2, on the other hand, by incorporating individual perceptions data, takes 

into account how individuals translate the physical water quality measures into the attributes 

of the lake that matter to them directly. 

Three water quality improvement scenarios, measured by a water quality index and/or 

water quality perception, are considered with the results from Model Ci and C2 used for all 

the scenarios. The first scenario improves all 130 lakes to the water quality of West Okoboji 

Lake, the clearest, least impacted lake in the state. Table 9 compares the water quality 

perception and water quality index of West Okoboji Lake with the average of the other 130 

lakes. Both as measured by the water quality index and the mean perceptions variable, West 

Okoboji represents a substantial improvement over the other 130 lakes in the state. Both the 

water quality index and water quality perception are second highest (9.08 and 6.81 

respectively) among 130 lakes. The second scenario is a less ambitious, more realistic, plan 

of improving nine lakes to the water quality of West Okoboji Lake (see Table 9 for 

comparison). The state is divided into nine zones with one lake in each zone being 

considered for improvement, allowing every Iowan to be within a couple of hours of a lake 

with superior water quality. The nine lakes were chosen based on recommendations by the 

Iowa Department of Natural Resources as possible candidates for a clean-up project. The last 

scenario is also a policy-oriented improvement. Currently of the 131 lakes, 65 are officially 

listed on the EPA's impaired water list. TMDLs are being developed for these lakes and by 

2009 plans must be in place to improve the water quality at these lakes enough to remove 

them from the list. Therefore, in this third scenario, the 65 impaired lakes would be improved 

to the median mean water quality perception and/or water quality index level of the 66 non-

impaired lakes. Table 10 compares the median values for the non-impaired lakes to the 
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averages of the impaired lakes. Notice that there is not much of a movement in either water 

quality measure under this last scenario. 

Based on the test results in Section V and the random parameter vector estimates, 

6i = (/,,<%,)', the conditional compensating variation associated with a change in water, 

water quality perceptions from Q to Q' and physical water quality from Z to Z' for 

individual i on choice occasion t is given by 

which is the compensating variation for the standard logit model. The unconditional 

compensating variation does not have a closed form, but it can be simulated by 

where R is the number of draws and r represents a particular draw from its distribution. The 

simulation process involves drawing values of 0i = (/,,«,)' and then calculating the resulting 

compensating variation for each vector of draws, and finally averaging over the results for 

many draws. Following Von Haefen (2003), 2,500 draws were used in the simulation. 

The resulting welfare estimates are provided in Table 11, along with the predicted 

number of trips under all scenarios. Improving all 130 lakes to both the water quality 

perceptions and water quality index of West Okoboji Lake (using Model C2) leads to 17 

percent increase in average trips. In contrast, improving to the water quality index of West 

Okoboji Lakes alone (using Model C,) leads to only a 3 percent increase in average trips. 

The annual compensating variation (CV) estimate when ignoring water quality perceptions 

CV, (£>,) = j ln[£ exp(^, [Q\Z\6, ])] - log exp(^, [£ Z;0, ])] (7) 

R r=\ [ j=0 j=0 J 
(8) 
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(Model Ci) is $12.39, versus a CV of $68.35 when considering both water quality index and 

perceptions (Model C%) for every Iowa household. Aggregating to the annual value for all 

Iowans simply involves multiplying by the number of households in Iowa, which is 

1,153,205.21 Thus, ignoring the perception information leads to a substantially smaller 

estimate in the overall impact of the first policy scenario. 

Under the second scenario, the annual compensating variation per household estimate 

is $0.90 when water quality improvement measured by water quality index (Model Ci) and 

$7.87 when quality improvement measured by both the water quality ladder and perception 

(Model Cz). This estimate is 7 percent and 11 percent of the values obtained in scenario one; 

i.e., in which all lakes were improved. As with the first scenario, the welfare estimates are 

substantially smaller when individual perceptions information is ignored. 

The third scenario is also valued considerably lower than the first water quality 

improvement scenario. The estimated compensating variation per Iowa household is $3.06 

when only water quality index is used (Model Ci) and $6.23 when both measures are used 

(Model C2). Also, the predicted trips only increase 1.24 percent for water quality index 

improvement (Model Ci) and 1.90 percent for both water quality perception and water 

quality ladder index improvements (Model C%). 

As discussed above, there is a big margin between compensating variations, one 

ignoring water quality perceptions information and the other including it. There is also a 

reduction in terms of predicted trip change, 28, 15, and 14 percent for the three scenarios, 

respectively. Further, the evidence that compensating variation calculated using both water 

quality measures is bigger than that calculated using water quality index suggests that agent's 

21 Number of Iowa households as reported by Survey Sampling, Inc., 2003. 
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cost-benefit analysis of improving water quality ignoring lake visitor's perception could be 

biased. In the current setting, the bias is downward. 

VII. Conclusion 

Individual day trip data collected from the Iowa Lake Survey 2003 shows that 

subjective quality assessment may influence individual's site choice decision. In addition, 

individuals appear to have somewhat different views of water quality than is captured by the 

objective water quality ladder measures used by the EPA and/or scientist. Correlation 

coefficients show that this disparity is different for two recreation groups: water body contact 

group and non-water body contact group. The fact that water quality perceptions do not 

perfectly align with either the physical measures or the corresponding water quality index 

suggests that such perception may provide useful additional information in explaining 

individual behavior. 

Repeated mixed logit model estimation result indicates that individuals' site choice 

decisions depend significantly on physical water quality, the water quality index and water 

quality perception. As was the case in Adamowitcz et al. (1997), the models with perceptions 

included outperform the models without such perception information. 

Compensating variation estimates in the last section of the chapter illustrate the 

importance of incorporating perceptions in terms of both estimating the welfare and trip 

impacts of proposed policy initiatives. Annual compensating variation ignoring individual's 

water quality perceptions is reduced by as much 90% of what is estimated using water 

quality perceptions. In terms of the annual predicted trips, ignoring individual's water quality 

perceptions reduces the change in predicted trips by as much as 28%. Therefore, in order to 

get accurate welfare measure, quality perceptions should be considered. 
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In this chapter, mean water quality assessment of a lake is used in the same way catch 

rate data has traditionally been used recreation demand analysis in part, because the water 

quality assessment is endogenous. In addition, individual's water quality assessments for all 

the 131 lakes are not available because survey respondents only reported the water quality 

assessments over lakes they were familiar with. However, as described in the previous 

section, water quality perception of each individual is linked with the physical water quality 

measures through individual's activities at the lakes where they visited. One refinement to 

the current analysis would be to replace the mean water quality assessment with a fitted 

assessment, derived, for example, from a regression of water quality perceptions on 

individual's socio-demographic variables, physical water quality measures, and the 

characteristics of the lakes. Although the variation of the water quality perceptions is small, 

making use of the predicted water quality assessments over the 131 lakes (i.e., in an 

instrumental variable approach) would avoid the endogeneity problem and would potentially 

improve both the explanatory power of the recreation demand and welfare estimation. 
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a order to make sound 

decisions concerning the future of 

Iowa lakes, it is important to understand 

how the lakes are used, as well as what 

factors influence your selection of lakes 

to visit. The answers you give to the 

questions in this survey are very 

important. Even if you have not visited 

any lakes in Iowa, please complete and 

return the questionnaire. It is critical to 

understand the characteristics and views 

of botli those who use and those who do 

not use the lakes. 
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a thb Grst section, we would like to Bad out which of the bikes on the enclosed 
map yon vWted and what yon did there. 

Mease indicate how often you or other members of your household vbiied each of the following lake in 

the cuntnl year. If you have not visited any lake: in Iowa thb year please check this box. 

3 I have not vbHed any lakes in low* thb year. 

In addition to recording the number of visits you took to each lake, if any, please indicate which ol 
the lake» you wtadwj visiting this year by marking the box In the second column 

We are very interested in your view of the water quality of Iowa's lakes. One way ol thinking about 
water quality b to use a ladder like the one shown to the right of the list of lake». The top of the 
water quality ladder stands for the best possible quality of water, while the bottom of the ladder 
stands lor the worst. On the ladder you can see the different levels of water quality. 

For example: the lowest level is so polluted That it has oil. raw sewage, and/or other thing* in il like 
trash. it has nltnost no plant or animal life, smells bad. and contact with It is dangerous to human 
health. Water quality that is 'beatable" would not harm you If you happened to lall into it lor a short 
time while boating or sailing. Water quality that b "(bhabk" b a higher level of quality than 
"boatable." Although some kinds of Osh can live in boatable water, it is only when water b "fishahle" 
that game fish like bass can live in it. Finally, "swimmable'' water is of a high enough quality that it is 
safe to swim in and ingest in small amounts. 

For any lake with which you ait Lunilur please indicate your assessment of the level of water 

quality associated with that lake h\ «waning a number between 0 and 10 thai b based on the water 
quality ladder pictured. Familial lake, inilude both those that you have visited this year as well a», 
those you have visited in the recent past. 

Cheek if 
yon have 
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Water Quality Ladder 
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Natnr oi I ^kv (Countv j 
i Brown» Lake (Woodbury) 
; Bmshv Cfetk Lake (Wcbw&r) 

Ck k 
you havf 

ever 
considered 
witting ibis 

take 

Water Quality Ladder 
Number of 

visits 
(January-December) 

in 200 i 
Single da\ <)u*r night 

. ?r^^Wps) j .^(tnps) 

Water 
! Quality 
Assessment 

Carter Lake (EYirui^uamie) j (trips) I #_ _^_(;rips) j 

Casey Lake (oka Hickory Milk) | 

(Tama) 1 ___(crip&) a _Ctnps)_; St 

Center l^ake ( Dickinson ; ; j :™ynE^L-. __.Ônps) j a 
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l.tisU"? Lake i I'vilk / (trip*) drips) j 

EWred Sherwood Lake (1 lancock) ((hps) (thps) ; .*• 
Fhe Wand Lake (Palo Aim) I j 

Fogleljke(Riagg)ld) i . _ =(IT!KL i 
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Green Beit lake (Black Hawk) ^ 
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Hooper Area Pond CWarrcn* (trips) : *_ 5. 
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Check if 
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-Name of Lake (Comity) 
- Meyers Lake (Black Hawk) 
: — v • ----- -

Ckckif { 
you haw 

ntr ' 
comWertd j 

Tbldm* I 
WLP I 

Water Quality Ladder 
Namhef of 

*W*a ; 
(j aniia ry - December) Water 

.._, bWM Qu^Ky 
Smgk-da> ! Over-night Assessment 

--- -- —" y--4 ••• " - v.'--."-. ...... •.. ~.v —.~v.v.~ ' 
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; Nine Eagles Lake iDecauu] _ : a ft >• 
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the IbHcwin;; kxràoons this year 

; SmgU'-<U> k>wr-niyht Single «lav Cher night 
; Lako m Illinois i t ! Lakes in Wisconsin ] c 
' Lakes in Mmnesoia ] ) : ; The Missouri River 
î Lakes in Missouri i. ; I ; The Mississippi River : 

Lakes in Nebraska ! ; Other Lakes und Ri\Trs * 
Lakcsm South Diiktxa j ; 

3. What activities do you or memlxtrs of your household typically participate in during your lake visits? 

Check all ihm apply 

OBoating Ulti QNaturc Appreciation/wildlife virwin^ 
OCamping U>a,l,nk OSnowmobiltng and other winicr ricrcation 
Ofishin* Uwnuem^ OS^immin^ and beach use 
OHunùnR Orkmckmg U Other , . . 
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In the following sections we will ask you some questions about potential changes to the 
water quality of Rathbun Lake located in Appanoose County, First, however, we will give 

you some information on the current condition of the lake. Please read this information 

carefully before answering the questions that follow. 

Rathbun Lakes Carrent Condition 
The quality of a lake can be described in many 

ways. One measure of water qualify is the 

clarity of the lake water. Wbter dahty is 

usually described In terms of hew br down 

into the water an 

object remains 

visible. The clarity of 

Rathbun Lake is 

currently between 2 

m 4 feet. This means 

that object* are 

visible down to 

about 2 lo 4 feet 

under the surface of 

the water.  

I ^ 

Current conditions of Rath ban Lake 
can be summarized «s 

WdTM CMMy Object} diAngh^Mbk 
2 to a feet wider water 

Algae blooms: i to 3 per y** 

A'-sW < ok-r biw to ywn *h b'ovm 
Water odor. «raid to Dccwondhf s&oaq 

Bacteria: occasional sWt-iew 
savti 4dvis<Kte$ powbk 

= „h qond ttap&e and 

T 

Rethbun Lake 
ApeanoM* Ccir-ry 

, Figure I. ( urrttii conditions of Rathbun lake 
Another measure ol 

water quality is the amount of nutrients and other contaminants contained in the water. Water 

degradation can result from a number of sources, including urban rwnclf. fertilizers used in agriculture, 

motor vehicles, and others. Currently nutrients contribute to the occurrence of al%ac blooms in the lake, 

usually 1 to 3 times per year. Under some circumstances these bloom* can be a health concern, causing 

skin rashes and allergic reactions. While Rathbun take is currently not regularly monitored, lakes with 

water quality measurements similar to those of Raihbun lake had "Swimming is Not Recommended" 

signs posted by the Iowa Department of Natural Resources for any* here from 6 to 8 weeks during a 

typical summer. 

The overall quality of ihe water can afkret other conditions of the lake. Poor water quality can result in an 

undesirable color and odor to the lake water. Cunently the color of Rathbun Lake varies between blue and 

yeenish brown. The water usually he a mild to occasionally strong odor ihmt many describe as "fishy" 

Finally, the quality ol the water nllccts the variety and quantity of lish in the lake. Rathbun Lake is a 

popular lishmg lake lor crappic and walleye. Catch rales lor crappies are typically very good (about 

120.000 annually) while walleye catches are more variable, hut Rathbun Lake is the best walleye fishery 

in southern Iowa (about 2,000 annually). Large mouth bass and bluegill are not important sportltsh 

spccies at Rathbun Lake. 

4. During the course of the next year 12004). how many trips do yon expect to take to Rathbun Lake? 

trips in 2004. 

A /fowd Lakes Suncy—RufkbuMLdke 
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In the next qeesXion, we will be ashing yam how you wonld vole on » special 
ballot regarding the water quality of Rathbun Lake While there la currently no such 

ballot Initiative, we would like you to respond as if you were actually voting on the 
initiative and as if thb were the only alternative available for improving water quality 
in the lake. (In particular, assume that no state action will be undertaken unless the 

referendum passes.) 

When you think «hou; imw aiww r. il & 

important to keep in mind tiwt people may 

indicate that thev 
Impmvtd condmoni c* RuhWn 
ombewmmamed* 
A-itf Canty otyn 

6toSfe«riuiw watet 

Akjae blowr* ksre'v more m*f ) pm f&a' 

Wat** cokK: gceen lo £»!«« 

F,#» 

rat* mwwn #ov*ur#M 
most y eats now) 

h*gh 

would be willing to 

pay more money 

when payment is 

hypothetical than 

when the)- arc 

immediately 

expected to pav. h 

may k rw I ir 

peuple t,« thai 

ihcy \upp^<n t 

project when they 

are nui sure they 

will ever have to pay any money based on their response. However, If the proposed payment!, are real and 

immediate, people may be more inclined to think about other opiions and what things tltey would have in 

pvc up to make this payment. So in answering tlie Mowing que^tiom, please keep in mind both the 

benefits of the water i|iul t\ improvement and the impact that passage ol such a referendum woukl haw on 

your B nances. In othi r A^'il- pkase answer as if this were * real referendum. 

.Suppose that mvMUnenl» could be made to actually improve the quality ol Rathbun lake. These invest

ments might include dmiging. building protection strips along the edge of the lake to reduce runoff frum tlie 

surrounding watershed or other structural changes to the lake and watershed. These changes would 

improve the lake over the next 5 years to the condition* described in Figure 2. 

Figure 1. Conditions of Rathbun Lake following an improvement 

Would you vote 'ye»" on a referendum to improve the water quality m Baihbun Lake to the level 

described here? The proposed project would cost yoit $«CV BID* (payable in five $«Btd div 5» 
installments over a five year period.) 

• n« Q ves 

6. How sure arc vou ol this answer? 

I (not sure at all) 2 3 4 ? (certain) 

(owdjakci SufifV—Rathhm Lntr 
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7. To hdp us better understand your answer. pkase mdkaie the angk most important reason lor your 

rfspcmsf to the preceding question 

Oln grneral. (he project is not a good use of my mone)' 

Oln general, the project is a goixl uxc ,,i my money 

OThe project is not realistic or ond.-^T 

0 Die costs of the project should be paid for by those ilamaging the lake, not hy me 

01 already contribute to environmenul causes a* muck as I can afford 

ONo one should have the right to damnée the lake m the first place 

8 Ho» many trips to Rathbun Lake would you make next year (2004) il the water quality at Rathbun 
Lake was Improved by the amount described in Figure 2? 

_trip* in 2004% 

Information on you and other members of your household will help us belter 

understand how household characteristics affect an individual's use of Iowa lakes and 

attitudes towards changes in them. It will also help us to determine how representative 

our sampk k of the state of Iowa. All of your answers arc strictly confidential. The 

information will only be used to report comparisons among groups of ptopk We will 

never identify individuals or households with their responses. Please he as complete in 

your answers as possible. Thank you. 

Q. \Vh.r k wwr age? 

Jl nu,' IN 026-34 030-59 076* 
J s ; Q33 - 4Q 060. 75 

10. Are ymi 

Onwlc Ofctnalc 

11. What is the highest level of schooling thai you have tompktfd? (Pleax check only one* 

OSome hl|(h school or less OSomc college or tradc/vocxlional school OAdvanced degree 
OHigh school graduate OCollege graduate 

IZ How many adults iincluding yourscIO live in your househokl? 

13. How many children live in your household (18 or under)-

14. What is your current employment status? 

Olull time Opaci time Oslttdew Ounemployrd Oretired 

15. II you are currently employed, how many heurs a week do you typically work? 
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16. If you are mrrcnUy employed. yon have the option n( working additional hours m increase vour 

total income? 

Ono Oye$—if so, what would your hourly wage he? 1 per hour 

17. If you answered "no" to question 16. and you could haw the option of working more or less hours. 
which wouM you prefer? 

QWork mere hours OWork the same number of hours OWork fewer hours 

18. What is your tctal h.xwhol,! niv^nk 'bthye taxes) loi 

Ou,t,1er astvn.noo-st-to/W) 
05(0,0(10.314',!)** O$60,(KI(kST4,o*i QOverSljO.m' 
O^I^.UOO.gin.HKt O*-5,tll)U-;W,U09 
O;jU,l)0().S'24.<Kt(' Oh l',.(xw,.y t'L V' OSI0Ù.UIH).SI^4.':l% 

19. Do )xiu own a boat? Qyes Qno 

f inally, we would appreciate a little more information on your reaction to 

this survey. 

10. How fikely do you think it is that, the results of surveys such as this one will alFect decisions about 
water quality in Iowa lakes? 

I (no elTcct at all) 2 3 4 ? (definite effects) 

21. II » w.i', qualiix p»unn -t,.h a* iht ,!<Mi Im' on page 4 were initiate but later information 
suw ill iliai it woi^d V "H'fectlV' ih ^ l'k. \ is it thai the project would he scrapped! 

1 (impossible) 1)4, utut.ily) 

22 Tf a project such as the our described on page 9 jailed to pass m a referendum, wl%t dn vou think is 
the likelihood that another, similar project would he considered within the »e\t lew years) 

1 (impossible) 2 3 4 5 (certainly? 

23. What do you think is the likelihood thai you will get additional information about the effectiveness of 
water quality improvement projects in the next few years? 

1 (impossible) 2 3 4 3 (certainly) 

Thank vou jiw Your purHnpatW in (his survey Afrer compfffidn. purveys VutuW I^nirnrd Ni, 
(iwAerinf KliiR 

IWjy Ha/I. Waiklap -\(,nKr:vi-
Itnva State L'nivcr^ln 

.4 zr 

L^hf&Survev—Kùthfmn Lu^'f / f I 
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Appendix B. Figure and Tables 

Water Quality Ladder 
Best possible 
water quality 

ID 

8 

7 

G 

5. 

4 

3 

2 

D 

Safe to drink 

Safe for 
swimming 

Game fish 
like bass 
can live in it 

Okay for boating 

Dangerously 
polluted 

Worst possible 
water quality 

Figure 1. Water Quality Ladder 
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Table 1. Socio-Demographics Summary Statistics3 

Mean Std. Dev. Minimum Maximum 

Total Day Trips 6.97 10.19 0 52 

Income $55,697 $36,444 $7,500 $200,000 

Male 0.67 0.46 0 1 

Age 54.21 15.89 15 82 

School 0.67 0.46 0 1 

Household size 2.54 1.31 1 21 

a Sample Size=5,052 individuals 

Table 2. Summary Statistics of Water Quality (WQ) Perception3 

Mean Std. Dev. Minimum Maximum 

Median WQ Perception 5.81 0.66 4.00 7.00 

Mean WQ Perception 5.75 0.51 4.11 6.81 

Standard deviation of WQ Perception 1.66 0.28 1.06 2.42 

Day Trips per capita 0.36 0.50 0.02 4.26 

a Sample Size =131 Lakes 
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Table 3. Water Quality Perception (WQP) and Total Day trip per Capita 

County Impaired Day-tripa WQPb N0 

Best 20 Water Quality Perception Lakes and Day Trips 

West Okoboji Lake Dickinson 0 1.46 6.81 571 

Dale Maffitt Reservoir Madison 0 0.11 6.68 93 

Fogle Lake Ringgold 0 0.09 6.67 12 

Three Mile Lake Union 0 1.37 6.67 156 

Pleasant Creek Lake Linn 0 0.39 6.61 204 

Poll Miller Park Lake Lee 0 0.18 6.59 27 

Rathbun Reservoir Appanoose 0 4.26 6.54 387 

Lake Wapello Davis 0 0.48 6.46 106 

Big Spirit Lake Dickinson 0 0.92 6.44 369 

Lake Meyer Winneshiek 1 0.71 6.43 473 

Mill Creek Lake O'Brien 0 0.12 6.42 31 

Twelve Mile Creek Lake Union 0 0.83 6.37 110 

Lake Keomah Mahaska 1 0.11 6.37 90 

Little River Watershed Lake Decatur 0 0.49 6.36 45 

Lake Iowa Iowa 0 0.17 6.34 86 

Lake Smith Kossuth 1 0.30 6.33 88 

Kent Park Lake Johnson 0 0.20 6.32 165 

Lake Icaria Adams 1 1.12 6.31 101 

Lake Ahquabi Warren 0 0.24 6.31 200 

Greenfield Lake Adair 0 0.16 6.26 34 

Average 0.2 0.69 6.46 167 
a Day Trip Per Capita 
b Mean Water Quality Perception 
0 Number of respondents to assess the lake 
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Table 3. (continued) 

County Impaired Day tripa WQPb Nc 

Worst 20 Water Quality Perception Lakes and Day Trips 

George Wyth Lake Black Hawk 0 0.69 5.25 224 

Mariposa Lake Jasper 1 0.04 5.24 42 

Williamson Pond Lucas 1 0.05 5.22 9 

Briggs Woods Lake Hamilton 0.31 5.18 88 

Tuttle Lake Emmet 1 0.08 5.14 22 

Ingham Lake Emmet 1 0.10 5.07 45 

Lake Macbride Johnson 1 1.20 5.06 160 

Mitchell Lake Black Hawk 0.05 5.04 26 

Meyers Lake Black Hawk 0.12 5.00 49 

Lower Gar Lake Dickinson 1 0.20 4.97 99 

Swan Lake Carroll 1 0.54 4.96 108 

Lake Darling Washington 1 0.43 4.95 148 

Little Wall Lake Hamilton 1 0.25 4.89 111 

Silver Lake (Palo Alto) Palo Alto 1 0.05 4.83 18 

Arbor Lake Poweshiek 1 0.08 4.70 44 

Silver Lake (Delaware) Delaware 1 0.07 4.69 39 

Trumbull Lake Clay 1 0.05 4.59 22 

Carter Lake Pottawattamie 1 0.39 4.53 98 

Manteno Park Pond Shelby 1 0.04 4.30 10 

Ottumwa Central Park Ponds Wapello 1 0.59 4.11 89 

Average 0.8 0.27 4.89 73 
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Table 4. Water Quality Variables and 2003 Summary Statistics 

Mean Std. Dev Min Max 

Secchi Depth (m) 1.44 1.12 0.17 8.10 

Chlorophyll (ug/1) 20.12 7.71 2.09 37.62 

Nitrogen (ug/1) 294.64 168.69 52.04 1278.84 

Nitrates (mg/1) 1.54 3.13 0.02 14.79 

Total Nitrogen (mg/1) 2.72 3.19 0.49 15.66 

Total Phosphorus (ug/1) 93.93 65.62 16.87 383.77 

Silicon (mg/1) 4.01 2.49 0.88 11.22 

pH 8.48 0.27 7.95 9.49 

Alkalinity (mg/1) 107.90 33.64 56.33 201.00 

Inorganic SS (mg/1) 8.08 7.27 0.60 49.54 

Volatile SS (mg/1) 8.40 6.38 0.85 38.55 

Cyanobacteria (mg/1) 293.63 827.09 0.01 7178.13 

Total Bacteria (mg/1) 302.60 829.14 3.99 7178.60 
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Table 5. Correlation Coefficient of Quality Assessment with Several Physical Measures 

Variables All Sample (5052) Water Contact Group (3619) 
Non-Water Contact Group 

(1433) Variables 

correlation statistic pvalue correlation statistic pvalue correlation statistic pvalue 
Day Trip per Capita 0.252 2.963 0.004 0.257 3.019 0.003 0.047 0.536 0.593 
Secchi Depth 0.351 4.260 <0.001 0.365 4.455 <0.001 0.132 1.517 0.132 
Chlorophyll -0.072 -0.823 0.412 -0.087 -0.987 0.325 0.009 0.106 0.916 
Total Phosphorus -0.330 -3.977 <0.001 -0.331 -3.987 <0.001 -0.209 -2.424 0.017 
Total Nitrogen -0.191 -2.216 0.028 -0.196 -2.275 0.025 -0.136 -1.564 0.120 
Nitrogen -0.352 -4.268 <0.001 -0.362 -4.415 <0.001 -0.241 -2.817 0.006 
Nitrates -0.029 -0.327 0.744 -0.031 -0.351 0.726 -0.041 -0.465 0.643 
pH <0.001 0.002 0.998 -0.006 -0.065 0.949 -0.001 -0.013 0.990 
Alkalinity -0.145 -1.661 0.099 -0.145 -1.664 0.099 -0.146 -1.675 0.096 
Silica -0.307 -3.664 <0.001 -0.311 -3.720 <0.001 -0.184 -2.123 0.036 
ISS -0.334 -4.025 <0.001 -0.338 -4.081 <0.001 -0.166 -1.917 0.057 
VSS -0.321 -3.844 <0.001 -0.336 -4.054 <0.001 -0.082 -0.937 0.350 
TSS -0.339 -4.095 <0.001 -0.349 -4.235 <0.001 -0.129 -1.483 0.141 
CTSI SEC -0.357 -4.344 <0.001 -0.369 -4.516 <0.001 -0.139 -1.595 0.113 
CTSI Chla -0.065 -0.743 0.459 -0.079 -0.905 0.367 0.009 0.100 0.921 
CTSI TP -0.306 -3.654 <0.001 -0.307 -3.663 <0.001 -0.196 -2.267 0.025 
WQI 0.214 2.484 0.014 0.218 2.541 0.012 0.144 1.654 0.101 
BOAT RAMP 0.257 3.024 0.003 0.253 2.973 0.004 0.138 1.585 0.115 
Wake 0.015 0.169 0.866 0.017 0.189 0.851 -0.058 -0.663 0.508 
Facilities 0.151 1.732 0.086 0.158 1.821 0.071 0.055 0.626 0.533 
State Park 0.143 1.640 0.103 0.145 1.662 0.099 0.099 1.127 0.262 
Log (Acreage Use) 0.135 1.542 0.125 0.118 1.354 0.178 0.111 1.272 0.206 
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Table 6. Summary Statistics for Lake Site Characteristics 

Mean Std. Dev Min Max 

Acres 662.41 2105.41 10 19,000 

Ramp 0.86 0.35 0 1 

Wake 0.67 0.47 0 1 

State Park 0.39 0.49 0 1 

Handicap Facility 0.38 0.49 0 1 
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Table 7. Regression of Mean Perceptions on Physical Measures and Lake Characteristics 

Estimate Std. Err /rvalue 

Constant -0.093 0.132 0.479 

Secchi Depth 0.296 0.154 0.056 

Log (Chlorophyll) 0.346 0.123 0.006 

Nitrogen (NH3+NH4) -0.021 0.119 0.859 

Log (Total Phosphorus) -0.322 0.139 0.022 

Log (Total Nitrogen) -0.244 0.302 0.422 

Silika -0.107 0.103 0.303 

Alkalinity -0.191 0.089 0.035 

Log (total bacteria) -0.117. 0.190 0.541 

Log (cyanobacteria) 0.018 0.193 0.925 

Quality Index of dissolved Oxygen 0.513 0.163 0.002 

Square of Quality Index of dissolved Oxygen 0.168 0.081 0.042 

Quality Index of Total Nitrates -0.353 0.287 0.222 

Quality Index of pH -0.112 0.135 0.408 

Square of Quality Index of pH 0.068 0.063 0.281 

Quality Index of total suspended solids -0.113 0.214 0.598 

Square of Quality index of suspended solids -0.142 0.072 0.052 

Quality Index of turbidity -0.224 0.128 0.083 

Boat Ramp dummy 0.162 0.083 0.054 

Wake dummy 0.208 0.083 0.013 

Handicap facilities dummy -0.004 0.081 0.965 

Log (Acreage Use) 0.156 0.096 0.106 

State Park dummy 0.038 0.089 0.673 
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Table 8a. Repeated Mixed Logit Model Parameter Estimates3 

Mot el A Mot lei B Model C 
Male -9.11 

(0.429) 
-7.55 

(0.428) 
-11.92 
(0.475) 

-11.91 
(0.473) 

-5.83 
(0.432) 

-14.89 
(0.487) 

-14.85 
(0.484) 

Age -0.12 
(0.074) 

0.20 
(0.078) 

0.07 
(0.081) 

0.09 
(0.081) 

0.002 
(0.078) 

-1.26 
(0.095) 

-1.27 
(0.095) 

Age2 0.005 
(0.001) 

0.001 
(0.001) 

0.002 
(0.001) 

0.002 
(0.001) 

0.003 
(0.001) 

0.013 
(0.001) 

0.014 
(0.001) 

School -0.26 
(0.387) 

3.67 
(0.422) 

1.37 
(0.524) 

1.25 
(0.527) 

4.88 
(0.433) 

0.95 
(0.542) 

0.90 
(0.540) 

Household 
Size 

-0.49 
(0.167) 

-0.98 
(0.163) 

-1.10 
(0.185) 

-1.06 
(0.185) 

-1.25 
(0.168) 

-1.65 
(0.191) 

-1.66 
(0.189) 

Price -0.331 
(0.001) 

-0.332 
(0.001) 

-0.334 
(0.001) 

-0.334 
(0.001) 

-0.330 
(0.001) 

-0.334 
(0.001) 

-0.335 
(0.001) 

Mean Estimate for Random Coefficient 
Log(Acres) 3.45 3.38 3.71 3.56 3.11 3.20 3.21 

(0.063) (0.066) (0.069) (0.069) (0.065) (0.066) (0.066) 
Ramp 14.46 14.49 13.69 13.11 14.39 10.79 10.74 

(0.828) (0.833) (0.843) (0.851) (0.826) (0.719) (0.719) 
Facilities 1.42 1.29 0.96 1.13 0.90 1.00 0.96 

(0.235) (0.247) (0.241) (0.242) (0.234) (0.241) (0.242) 
State Park 2.99 3.59 3.43 3.59 4.23 3.82 3.86 

(0.260) (0.267) (0.307) (0.305) (0.252) (0.254) (0.254) 
Wake 4.10 3.54 2.13 1.58 3.43 4.27 4.33 

(0.258) (0.260) (0.320) (0.323) (0.255) (0.297) (0.297) 
a -8.91 -10.09 -10.29 -10.28 -10.42 -10.28 -10.37 

(0.214) (0.229) (0.040) (0.040) (0.039) (0.040) (0.040) 
Dispersion Estimate for Random Coefficients 

Log(Acres) 0.35 0.35 0.33 0.33 0.34 0.32 0.32 
(0.01) (0.01) (0.01) (0.01) (0.01) (0.05) (0.01) 

Ramp 19.92 21.05 18.01 18.09 21.99 18.69 18.72 
(0.62) (0.71) (0.63) (0.63) (0.58) (0.58) (0.57) 

Facilities 13.13 13.38 12.68 12.54 13.24 13.20 13.25 
(0.26) (0.27) (0.24) (0.24) (0.26) (0.26) (0.27) 

State Park 11.75 12.26 14.29 14.27 12.54 12.77 12.75 
(0.26) (0.27) (0.28) (0.28) (0.26) (0.27) (0.27) 

Wake 13.38 13.28 15.79 15.70 13.63 16.30 16.34 
(0.25) (0.27) (0.32) (0.32) (0.27) (0.33) (0.33) 

a 2.38 2.50 2.46 2.46 2.51 2.47 2.47 
(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

Parentheses are standard errors. 
a All of the parameters are scaled by 10, except a (which is unsealed) 
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Table 8b. Repeated Mixed Logit Model Parameter Estimates3. 

Variable Mot el A Mod lei B Model C 
Secchi 2.51 

(0.096) 
2.28 

(0.098) 
2.59 

(0.100) 
2.36 

(0.100) 
Log(Chlorophyll) 2.50 

(0.223) 
2.21 

(0.224) 
3.01 

(0.234) 
2.63 

(0.234) 
NH3+NH4 -0.01 

(0.001) 
-0.01 

(0.001) 
N03+N02 -1.59 

(0.071) 
-1.71 

(0.072) 
Log(Total Nitrogen) 0.32 

(0.068) 
0.41 

(0.068) 
4.87 

(0.283) 
5.48 

(0.284) 
Log (Total Phosphorus) -1.38 

(0.135) 
-1.12 

(0.141) 
-4.03 

(0.160) 
-3.90 

(0.164) 
Silicon 1.10 

(0.035) 
1.08 

(0.035) 
pH -69.89 

(10.836) 
-64.04 

(11.099) 
pH2 4.25 

(0.627) 
3.88 

(0.643) 
Alkalinity 0.04 

(0.003) 
0.05 

(0.003) 
Inorganic SS -0.083 

(0.009) 
-0.079 
(0.009) 

-0.008 
(0.010) 

-0.009 
(0.010) 

Volatile SS 0.24 
(0.014) 

0.26 
(0.014) 

0.03 
(0.019) 

0.08 
(0.019) 

Log (Cyanobacteria) -1.64 
(0.079) 

-1.71 
(0.085) 

-1.36 
(0.091) 

-1.41 
(0.091) 

Log (Total Bacteria) 1.82 
(0.099) 

1.97 
(0.109) 

0.87 
(0.116) 

1.01 
(0.120) 

Mean Perception ( S )  1.47 
(0.127) 

2.22 
(0.141) 

3.50 
(0.100) 

3.40 
(0.096) 

Water Quality Index 0.40 
(0.057) 

-0.02 
(0.006) 

Log-Likelihood -59319 -59278 -59096 -59071 -59614 -59502 -59503 

Parentheses are standard errors. 
a All of the parameters are scaled by 10, except for a (which is unsealed) 
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Table 9. West Okoboji Lake vs. the other 130 Lakes 

West Okoboji Average of the other Average of the 9 

Lake 130 Lakes Zone Lakes 

Mean Perception 6.81 5.74 5.67 

Water Quality Index 9.08 7.79 7.90 

Table 10. 65 Non-Impaired Lakes vs. the 66 Impaired Lakes 

Median of the 65 Non- Averages of the 66 Impaired 

Impaired Lakes Lakes 

Mean Perception 5.94 5.60 

Water Quality Index 8.17 7.45 
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Table 11. Annual Compensating Variation Estimates 

All 130 Lakes Improved to 9 Zone Lakes Improved to 65 Impaired Lakes Improved to 

Average CV West Okoboji. West Okoboji. Median 

Model Ci Model C2 Model Ci Model C2 Model Ci Model C2 

Per Choice Occasion $0.24 $1.31 $0.02 $0.15 $0.05 $0.12 

Per Iowa Household $12.39 $68.35 $0.90 $7.87 $3.06 $6.23 

For all Iowa Households3 $14.29 $78.82 $1.03 $9.08 $3.53 $7.18 

Predicted Trips'3 6.68 8.53 6.47 7.45 6.53 7.42 

a Units are million dollars. 
b Predicted Trips are 6.45 using Model Cj with current water quality index and 7.28 using Model C2 with current water quality 
perceptions. 



www.manaraa.com

103 

Appendix C. Water Quality Index 

According to McClelland (1974), water quality index (WQI) is a continuous scale 

from 0 to 100 which reflects the composite influence of nine significant physical, chemical, 

and microbiological parameters of water quality. It was developed and field evaluated by the 

National Sanitation Foundation (NSF) to provide a uniform method for indicating and 

reporting the benefits - or lack of benefits - realized from billions of dollars invested in 

stream quality improvement program. 

It was developed based on an opinion research technique. A panel of 142 persons 

with expertise in water quality management was carefully selected and they received a series 

of mailed questionnaire. In the first questionnaire, they were asked to rate the 35 parameters 

for possible inclusion in a water quality index on a scale of "1" (highest relative significance) 

to "5" (lowest relative significance). In the second mailing, respondents were asked to review 

their original judgments and modify them if they wished. In addition, panelists were asked to 

designate not more than 15 parameters, which they considered to be the "most important" for 

inclusion in a water quality index. Utilizing expert opinion derived from first two rounds of 

the study, 11 parameters, or groups of parameters, were listed. In the third mailing, 

respondents were asked to assign values and draw graphs for the variation in level of water 

quality produced by different levels of the nine individual parameters: dissolved oxygen, 

fecal coliform density, pH, biochemical oxygen demand (5-days), nitrates, phosphates, 

temperature, turbidity, and total solids. Also, respondents were asked to compare relative 

overall water quality, using a scale of "1" (highest relative value) to "5" (lowest relative 

value) to obtain the parameter weightings. Finally, "Judgments" of all panelists were then 

combined to produce a set of "average curve" scaled between 0 and 100 - one for each 

parameter. 

The WQI is derived by converting concentrations of each water quality characteristic 

into a corresponding index, qt which is read from the quality curve. Weight for each of the 

corresponding index, w. were derived based on the summary judgments of the expert panel. 

These weights were designed to sum to 1 for the nine water quality characteristics. The qt 
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and w(. values were combined into a composite multiplicative index of the following form: 

rk 
i~ 1 

The subscript refers to the z'-th parameter, and n is the number of parameters (in this case, 

n=9). By design, WQI varies between and is bounded by 0 and 100. 

To construct water quality index, it must be modified to account for the four 

characteristics (i.e., temperature, fecal coliform, phosphates, and biochemical oxygen 

demand for 5-days) that are not modeled. Temperature and fecal coliform were not available 

from the ISU Limnology lab and units of biochemical oxygen demand and phosphates were 

not consistent with McClelland (1974). To accomplish this, new weights are calculated for 

the remaining five parameters so that the ratios of the five weights are retained and the 

weights sum to 1. Table B. 1 below presents the original and revised parameter weights for 

the nine pollutants. Each of the five quality curve are duplicated by linear interpolation 

method. Although it is impossible to get the same value with respect to the parameter level, 

linear interpolation method gives the value of quality curves as close as McClelland's. 

Table C.l. Original and Revised Weights for WQI parameters 

Parameters Original Weights Revised Weights 

Dissolved Oxygen 0.17 0.32 

Total Suspended Solid 0.07 0.13 

Nitrates 0.10 0.19 

Turbidity 0.08 0.15 

pH 0.11 0.21 

Fecal Coliform Density 0.16 0.00 

Biochemical Oxygen Demand (5-day) 0.11 0.00 

Temperature 0.10 0.00 

Phosphates 0.10 0.00 

Total 1.00 1.00 
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The categories of Water Quality Ladder are defined according to a corresponding 

WQI values, i.e., boatable if WQI value is 25, fishable if WQI value is 50, and swimmable if 

WQI value is 70. 

Reference 

McClelland, N. L, "Water Quality Index Application in the Kansas River Basin," EPA-

907/9-74-001, 1974. 
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Appendix D. Carson's Trophic State Index (CTSI) 

Carson and Simpson (1996) defined trophic state as the total weight of living 

biological material (biomass) in a waterbody like a lake, a river, and a stream at a specific 

location and time. In accordance with the definition of trophic state, the trophic state index 

(TSI) of Carlson (1977) uses algal biomass as the basis for trophic state classification.22 

Because of the reciprocal relationship between biomass concentration and Secchi depth (SD) 

transparency, each doubling in biomass would result in halving transparency. By 

transforming SD values to the logarithm to the base 2, each biomass doubling would be 

represented by a whole integer at SD value of lm, 2m, 4m, 8m, etc. Based on this relation, 

some algebra gives a trophic state index based on SD ranges from 0 to 100 as following: 

CTSI _ SEC = 10 (6 •- In SD / In 2), 

where In is a natural log transformation and SD measured in meter. The advantage of using 

the SD is that it is an extremely simple and cheap measurement and usually provides a TSI 

value similar to that obtained for chlorophyll. 

In addition, utilizing the relationship between SD and chlorophyll pigment (Chla) and 

total phosphorus (TP), trophic indices based on chlorophyll and total phosphorous are 

defined as 

CTSI _ Chla = 10 {6 - (2.04 - 0.68 In Chla) / In 2} 

CTSI _ TP = 10 {6 - (ln(48 / TP) / In 2}. 

The number derived from chlorophyll is best for estimating algal biomass in most lakes and 

priority should be given for its use as a TSI. The advantage of phosphorous index is that it is 

relatively stable throughout the year and, because of this, can supply a meaningful value 

during seasons when algal biomass is far below its potential maximum. 

The CTSI reflects a continuum of "states." The range of the index is from 

approximately zero to 100, although the index theoretically has no lower or upper bounds. 

The index has the advantage over the use of the raw variables in that it is easier to memorize 

units of 10 rather than the decimal fractions of raw phosphorus or chlorophyll values. 

22 Details can be found on the website at http://dipin.kent.edU/tsi.htm#A%20Trophic%20State%20Index. 

http://dipin.kent.edU/tsi.htm%23A%20Trophic%20State%20Index
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A trophic state index is not the same as a water quality index. Since eutrophic is often 

equated with poor water quality, TSI and water quality index are confused with each other. 

Water quality index depends on the use of that water and the local attitudes of the people, 

which is a subjective judgment. On the other hand, the TSI is an objective standard of trophic 

state of any body of water. 

References 

Carlson, R.E., and J. Simpson, A Coordinator's Guide to Volunteer Lake Monitoring 

Methods, North American Lake Management Society, 1996. 

Carlson, R.E., "A Trophic State Index for Lakes," Limnology and Oceanography 22 (1977), 

361-369. 
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Chapter 4. Estimation of the Impact of Water Quality Improvement 

I. Introduction 

The recreation demand model provides one approach to estimating the benefits of 

quality improvement. However, this approach is often limited by range of the observed 

variation of the quality change. To address this limitation, the recreation demand literature 

increasingly makes use of contingent behavior (CB) data. In the CB framework, respondents 

are asked how their pattern of trips to a set of sites would change given a proposed water 

quality change.23 Thus, combining observed data with CB data allows the analyst to estimate 

the impact of water quality improvement on the trip behavior beyond the observed variation. 

Further, even when quality variations already exist, the additional variation provided by CB 

data will generally yield more precise recreation demand parameter estimates. However, 

relatively little is known as to whether the stated responses to these hypothetical quality 

changes are consistent with how households respond to actual quality changes. The question 

is: Do individuals respond to hypothetical water quality changes in the same as way as they 

respond as actual water quality changes? Do they respond more to hypothetical water quality 

changes (e.g., with the hope of influencing policy change or because they ignore their budget 

constraint)? Alternatively, do they respond less because they do not believe the changes will 

actually occur? 

The purpose of this chapter is to investigate individual's response to a hypothetical 

water quality improvement. Toward this end, I jointly model the recreation demand model 

using observed and CB trip data collected from the 2004 Iowa Lakes Survey. The Iowa lakes 

survey collected three sets of trip data for 131 lakes in Iowa: a) actual trips in 2004, 

b) anticipated trips in 2005 to the same lakes given current lake conditions and c) anticipated 

trips in 2005 given a hypothetical improvement to the lakes. The hypothetical water quality 

improvement was described in terms of the water quality ladder index detailed in the 

23 Sometimes it is referred as "stated preference", SP, data. 
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previous chapter. Specifically, the hypothetical water scenario proposed improving all lakes 

in the state to be at least safe for swimming, with a water quality index of 7. The three types 

of recreation data provide a unique opportunity to investigate the consistency of individual 

responses to actual versus hypothetical environmental conditions. 

The remainder of this chapter is divided into six sections. Section II provides a review 

of the existing literature on the estimation of the recreation demand using CB data. Section 

III describes the observed and CB trip pattern under the current water quality and the 

hypothetically improved water quality level collected in the 2004 Iowa Lakes Survey. The 

repeated mixed logit model (RXL) to be used in the analysis is described in Section IV. The 

estimation results are then discussed on Section V. Section VI provides welfare measure 

estimate based on the estimated model and conclusions follow in Section VII. 

II. Literature 

A number of recent recreation demand studies have combined observed and 

contingent behavior data in order to better estimate household response to environmental 

quality changes. Adamowicz et al. (1994) compare site selection choices estimated from 

actual data versus under hypothetical scenarios. Adamowicz et al. (1997) compare the choice 

of moose hunting sites using observed (i.e., revealed preference, RP) and stated preference 

(SP) data and investigate the effect of perceptions versus objective measures of 

environmental quality on site demand. Both Englin and Cameron (1996) and Azevedo, 

Herriges and Kling (2003) combined data on the number of trips actually taken with intended 

number of trips given alternative trip costs. Layman, Boyce, and Criddle (1996) combine 

observed travel cost data and hypothetical travel cost data to estimate the value of three 

alternative recreational fishing management proposals. Loomis (1997) uses information on 

actual trips at current trip costs, intended visitation at higher trip costs, and intended 
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visitation with two proposed quality levels of the resource. Grijalva et al. (2002) use three 

types of mountain climbing data: the first one is prepolicy observed climbing trip data, the 

second one is CB climbing trip data given hypothetical changes in site access, and the final 

one is postpolicy observed climbing trip data. The CB trip data consisted of two hypothetical 

policy scenarios. One is the closure of one site and the other is the closure of two sites. They 

show that policy change causes significant changes in consumer surplus. 

The primary point of most of the above studies is to illustrate the benefits of 

combining observed and contingent behavior trip data for the valuation of environmental 

quality changes. One such advantage is the ability to evaluate policies beyond the realm of 

observable levels of a given resource before it is effectively lost, or over quality and price 

changes that are policy relevant but historically unobservable (Adamowicz et al., 1994; 

Englin and Cameron, 1996; Grijalva et al., 2002). Adamowicz et al. (1994) also state that the 

multicollinearity between quality characteristics that is often present in observed data may be 

reduced through the strategic design of quality levels in the intended behavior portion of the 

survey. In addition, Ben-AM va and Morikawa (1990) show that combining these two data 

sets increases the accuracy of parameter estimation over models using either type of data 

alone. 

Considerably less attention has been paid in the literature to testing the validity of 

individual responses to contingent behavior scenarios; i.e., whether observed and contingent 

behavior data are consistent with the same underlying preference structure.24 Ideally, testing 

the "consistency" of the two data sets would take the form of tests for the equality of 

parameters estimated separately for the two types of data. The problem is that most data sets 

24 This issue is analogous to concern in the contingent valuation literature regarding the incentive compatibility 
of CV referendum questions. 
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lack sufficient variation in both price and quality to fully test for consistency in the responses 

of participants. Azevedo, Herriges and Kling (2003) test for the consistency of RP and CB 

trips to wetlands, but are limited to investigating travel cost responses (real and hypothetical). 

Their data lacked sufficient variation in wetland quality attributes. Adamowicz et al. (1997) 

also test for consistency between observed and contingent behavior data. They compare the 

choice of moose hunting sites using observed (RP) trips to and stated preferences (SP) in the 

form of conjoint data.25 They also investigate the effect of perceptions versus objective 

measures of environmental quality on site demand. The subjective perceptions of quality are 

then used as explanatory variables in an RPperceptions model. An RP0bjective model is also 

developed using objective perceptions of quality as explanatory variables. Both models are 

pooled in order to test for consistency between actual and CB responses. For each of these 

pooling models they fail to reject the null hypothesis of parameter equality. However, the 

consistency test for a third model, which pools all three data sets, results in the rejection of 

parameter equality. 

There are two limitations to the Adamowicz et al. (1997) study. First, limitations in 

the actual site quality attributes preclude them from estimating a full set of quality effects for 

the revealed preference data alone. Second, the contingent behavior data is based on 

hypothetical sites and attributes. The hypothetical nature of the sites makes the direct 

comparison (and modeling) of the RP and CB data less straightforward. The advantage of the 

Iowa Lakes data, in contrast, is that there is ample variation in the water quality attributes and 

the RP and CB trip information concerns the same set of actual sites. 

25 Conjoint CB surveys ask respondents to choose among pairs (or sets) of hypothetical sites, rather than 
reporting visits to actual sites under hypothetical quality changes. 
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III. Data and Survey Results 

The 2004 Iowa Lakes Survey is the third year survey in a four year study, jointly 

funded by the Iowa Department of Natural Resources and the USEPA, aimed at 

understanding recreational lake usage in Iowa and the value placed on water quality in the 

state. The survey was sent by direct mail in February of 2005 to the 5,206 Iowans who 

completed the 2003 survey.26 The survey collected information on a household's past trip 

behavior in 2004 and anticipated trips in 2005 under both current and hypothetically 

improved water quality levels. 

Similar to the 2003 Iowa Lakes Survey, standard follow-up procedures were used to 

encourage a high response rate to the survey, including a postcard reminder mailed two 

weeks after the initial mailing and a second copy of the survey mailed one month later. In 

addition, survey respondents were provided with a $10 incentive for completing the survey. 

A copy of Iowa Lakes Survey 2004 is included as an appendix to this chapter (Appendix A). 

The survey itself has two major sections. The first section (pp 3-7) asks respondents 

to report how frequently they visited each of 131 lakes in the state during 2004 and how 

frequently they intend to visit in 2005 under both current conditions and a proposed water 

quality improvement. In describing both current and hypothetical water quality conditions, 

the water quality ladder index described in the chapter 3 was used. The proposed water 

quality improvement scenario would move all the lakes to at least the swimmable level (7). If 

current water quality index of a lake is below 7 (swimmable) then the improved water quality 

is 7. If current water quality of a lake is above or at 7, then water quality is unchanged under 

the scenario. Under this scenario, the water quality of fifty-two lakes in Iowa would be 

26 The 2003 Iowa Lakes survey was mailed to 8,000 Iowa residents selected randomly from among households 
living in the state. 
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improved, while seventy-nine lakes are remained unchanged. Color coded numbers, along 

with the water quality ladder, were used to convey the water quality conditions. 

In order to collect information about each household's single day trips for each of the 

lakes in the survey, three columns were provided in which to indicate actual single day trips 

in 2004 and anticipated trips in 2005 under current and proposed water quality levels. The 

first column is for the actual number of past trips in 2004 (i.e., "observed trips") and the 

second column is for the anticipated number of trips in 2005 under the current water quality 

(i.e., "next year trips"). The third and fourth columns show the current water quality 

conditions and proposed water quality improvement in terms of the water quality ladder. 

Given the water quality improvement scenario, respondents are asked to indicate how many 

single day trips they would take to each of the lakes in the last column (i.e., "CB trip"). 

The second section of the survey (pp 7-10) collects socio-demographic information, 

including age, gender, education, etc. Further, the second section of the questionnaire asks 

for details of a household's employment status including the number of work weeks, paid 

vacations, work hours per week, either hourly wage or salary, and the work options (e.g., 

whether individual is free to choose their number of hours to work). These latter data are not 

used for the current analysis. 

A total of 4,310 surveys have been returned to date. Allowing for 65 undeliverable 

surveys and 14 deceased individuals in the original sample this corresponds to an 84% 

response rate. The high response rate is a result, in part, from the fact that the sample used for 

the survey is a subset of the last year's respondents. From the 4,310 completed surveys, 

1,223 surveys were available in time for this analysis.27 A portion of the respondents, 

however, did not complete the survey sections on 2004 and 2005 trips: 41 for observed trips, 

27 The remainder of the surveys are still in the process of being entered and checked for coding errors. 
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100 for next year trips, and 362 for CB trips. In order to maintain a balanced panel, the union 

of these three non-responses was deleted, from the sample, leaving the 838 respondents who 

had provided information on all three types of day trips. 

Finally, similar to the previous chapter, anyone reporting more than 52 total single 

day trips to the 131 lakes in any of the three types of trips was excluded. This reduced the 

sample to 782 observations. Defining the number of choice occasions as 52 trips per year 

allows one trip to one of the 131 Iowa Lakes per week. While the choice of 52 is arbitrary, it 

seems a reasonable cut-off for the total number of allowable single day trips for the season. 

Invariably some of the respondents who recorded trips greater 52 did in fact take this number 

of trips. However, since this survey was randomly sent out to Iowan, some of the recipients 

live on a lake and it may be those individuals who record hundreds of "trips" are simply 

returning to their place of residence. 

The initial question on the individual's trip behavior in next year is whether or not 

he/she takes more trips to the improved lake. Table 1 lists the summary statistics for the three 

types of trips and for several key socio-economic variables.28 The average number of 

observed single day trips in 2004 to all 131 lakes is 6.65, ranging from zero to 50 trips per 

year. The average number of trips anticipated in 2005 under current conditions is 9.11 and 

9.26 under hypothetically improved water quality. Thus, survey respondents expect to take 

more trips in 2005 regardless of whether the water quality will be improved or not. The 

survey respondents are more likely to be older, male, have a higher income, and be more 

educated than the general Iowa population. Schooling is entered as a dummy variable 

equaling one if the individual has attended or completed some level of post high school 

education. 

28 All of the tables are in Appendix B. 
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Table 2 summarizes the average of differences between the total numbers of trips to a 

lake under the hypothetical water quality improvements and the anticipated numbers of day 

trips under current conditions, both for 2005. As expected, the average number of day trips 

increases for those lakes with initial water quality is below 7 (i.e., for the lakes that are 

improving). The lake whose water quality improved from 3 to 7 is the Lake of Three Fires, in 

Taylor County, and its day trips increases by 12 under the proposed water quality 

improvements. Day trips to lakes whose initial water quality is 6, increased by 6.5 over the 

21 lakes. On the other hand, day trips to lakes whose initial water quality is at or above 7 

decrease. Table 2 suggests that proposed water quality improvement generally increase an 

individual's anticipated trips to the improved lakes and that they, on average, substitute trips 

to non-improved lakes with trips to improved lakes. For example, suppose there are three 

lakes, A, B, and C, around individual i and travel costs to each of three lakes are $10, $14, 

and $20 respectively. Suppose water quality of three lakes are rated as 5 (A), 6 (B), and 7(C) 

on the water quality ladder and individual i took trips to the one lake whose water quality is 

at 7 (Lake C) because water quality is the most important factor to his/her site choice 

decision. Now, suppose water quality of the lake A and B is improved to the swimmable 

level (7). Then the hypothetical water quality improvement changes the individual i 's 

intended trips such that he/she decreases trips to lake C while increasing trip to lake A or B. 

A more detailed analysis will be required to measure the specific impact of hypothetical 

water quality improvement. However, these aggregate data do suggest that individuals 

respond to the hypothetical water quality improvement in the manner we would expect. 
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IV. Model 

Three types of data (observed trips in year 2004, next year trip under current water 

quality, and contingent behavior trip under hypothetically improved water quality) are used 

to jointly estimate the recreation demand and to test the hypotheses regarding contingent 

behavior responses. Two hypotheses are of interest: one is whether individual anticipate 

changes for their day trips next year and the other is whether individuals respond to 

hypothetical water quality improvements in the same way they responded to actual water 

quality different across lakes in 2004. 

The model begins by specifying the utility that individual i associates with visiting 

site j on choice occasion t under scenario j, where s = 04 (for 2004 RP data), 05 (for 2005 

anticipated trips), and 05# (for 2005 trips under hypothetical conditions). Specifically, I 

assume that 

The notation is similar to the model in chapter 3. Each data set has 52 choice occasions. Vis 

the deterministic component of utility and sijts is an error component which is assumed to be 

an iid extreme value random variable. The vector st consists of socio-demographic 

characteristics. 7?. is the travel cost from each lowan's residence to each of the 131 lakes as 

calculated with PCMiler. Zjs represents water quality ladder index for lake j under scenario 

s. Ds is the dummy variable that =1 for s = 05 and 05H, and = 0 otherwise. Thus, 

/?,. captures shifts in the intercept of V between 2004 and 2005, while S05 captures shifts in 

Ujjls — ' Zj, Xj ,S;) + Sijts 

(1) 

/ = ! , • • • , 5 2  .  
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the marginal response to water quality. Z" denotes the hypothetical difference between 

baseline water quality and the water quality under scenario s. Thus Z"s ~ 0 for s = 04 and 05, 

while taking nonnegative values for the contingent behavior trip (s = 05//). The parameter 

SH then captures shifts in the marginal response to a hypothetical improvement of water 

quality. Xj denotes other site characteristics (including lake facilities and state park 

designation). 

Notice that the parameters <%,, /?,., and are allowed to vary across individuals, 

allowing for heterogeneity of preferences and correlation in the utilities of individuals across 

choice occasions. Specifically, these parameters are assumed to be distributed randomly 

across individuals in the population. The random parameter at was introduced by including 

dummy variable Rj which equals one for all of the recreation alternatives (j = 1,•••,/) and 

equals zero for the stay at home option (j = 0), following Herriges and Phaneuf (2002). 

Similarly, /?. was introduced by including Rj xDs, which equals zero for the actual trips in 

2004 and stay at home option while it equals one for all of the recreation sites for anticipated 

trips in 2005. 

The random parameters a,, /?,., and n can be viewed as sum of their respective 

means («,/?, and y ) and individual deviations from these means (^ ,pt, and r,), allowing 

for variation in an individual's tastes relative to the average tastes in the population (Train, 

1998). Therefore, we can rewrite the utility function in (1) as 

Jk 's .+V,». ,  j  = 0  

""  [â  + / iD,-rP l l+(S + S"D ,  ) Z J t  + S " z ; + r  x t  +  =  v  •  V ,  K )  

where the unobservable portion of utility is given by 
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f^oa, l = h  

This unobservable portion of utility is correlated over sites and trips because of the common 

influence of the deviation terms which vary over individuals. For example, an individual with 

a large negative deviation from the mean of «, will be more likely to choose the stay-at-home 

option on each choice occasion, the ^ capturing in this case some unobserved attribute of the 

individual causing them to prefer staying at home (e.g., they cannot swim or do not like 

fishing). On the other hand, someone with a large positive deviation (pi will tend to take many 

trips. In addition, by introducing dummy variable Ds, the error correlation due to "repeated 

choices" is addressed. Thus, the error correlation across repeated choices increases as the 

variance of the random coefficients increase. Random parameter interpretation is useful 

because error correlation due to repeated choices and preference heterogeneity can be 

addressed. Further, since the unobserved portion of utility is correlated over sites and trips 

choice occasions, concern about the familiar IIA assumption does not apply. 

Given that the eijts 's are assumed to be iid extreme value, the resulting model 

corresponds to McFadden and Train's (2000) mixed logit framework. A mixed logit model is 

defined as the integration of the logit formula over the distribution of unobserved random 

parameters (Revelt and Train, 1998). Let the vector of random parameters in the model 

defined above denoted by = (#,, /?,,/,)and let £ = (A, K, 5, Sos, 5")denote the fixed 

parameters. If the random parameters, <y(., were known then the probability of observing 

individual i choosing alternative j on choice occasion t for scenario s would follow the 

standard logit form 
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v M -  . ( 4 )  
Ëexpt^C®,-^)] 
&=0 

Since F//w is not a function of f, the overall contribution of individual i to the likelihood 

function would be 

s J 

where denotes the number of trips by individual i to site j under scenario s and 

Lijs(coi,£) denotes the common value of Lij/S(<y,.,£) across at t. Since the a>i is unknown, the 

corresponding unconditional probability, /)(#,£) is obtained by integrating over an assumed 

probability density function for the <y(. 's. The unconditional probability is now a function of 

0, where 6 represents the estimated moments of the random parameters.29 This repeated 

Mixed Logit model assumes the random parameters are iid distributed over the individuals so 

that 

1. (5) 

No closed form solution exists for this unconditional probability and therefore simulation is 

required for the maximum likelihood estimates of 6 and £30 One thing to note is that since 

individual i appears three times in the model, the same draws of the random parameter 

vector are used for three repeated choices. This specification does not lead to perfect error 

29 In the current model, 0  =  ( y ,  a ,  ,  c r y X ,  •  •  • ,  ,  c r a  )  
30 Train (2003) describes simulation methods for use with mixed logit models, in particular maximum simulated 
likelihood which I employ. Software written in GAUSS to estimate mixed logit models is available from 
Train's home page at http://elsa.berkelev.edu/~train. 

http://elsa.berkelev.edu/~train
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correlations because the independent extreme value term sijts still enters the utilities for each 

choice. 

Again, there are two variations which might impact the individual's trip behavior in 

the model. One is year-to-year fluctuation (from year 2004 to year 2005) given current water 

quality and the other is hypothetical water quality improvement in year 2005. The parameters 

/?. and <505 capture changes in behavior due to year-to-year fluctuation where /?. captures 

mean shift in total trips and 505 reflects changes in response to water quality between years. 

In contrast, the parameter ôH captures differences in the response to hypothetical water 

quality improvements in 2005. 

Three hypotheses are of interest. The first hypothesis of interest is whether or not 

individuals respond differently to hypothetical water quality improvement than they do to 

actual water quality differences across lakes, i.e., H\ : SH = 0. The second hypothesis of 

interest is whether or not individuals anticipate changes in their overall trips between 2004 

and 2005. This hypothesis can be written as Hi : /?,. = 0, S05 = 0. The last hypothesis is the 

joint hypothesis; i.e., Hi : /?,. = S05 =ôH= 0. 

V. Estimation Result 

A. Specification 

The model in equation (1) uses the same functional forms as in the chapter 3 for the 

lake characteristics and socio-demographic variables. The water quality index is entered 

linearly. Socio-demographic characteristics are assumed to enter through the "stay-at-home" 

option. They include age and household size, as well as dummy variables indicating gender 

and college education. A quadratic age term is included in the model to allow for 

nonlinearities in the impact of age. Site characteristics are included with random coefficients. 
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This is to allow for heterogeneity in individual preferences regarding site characteristics, 

such as wake restrictions and site facilities. For example, some households may prefer to visit 

less developed lakes with wake restrictions in place, while others are attracted to sites 

allowing the use of motorboats, jet skies, etc. It is assumed that the random parameters y, are 

each normally distributed with the mean (yk) and dispersion (cr. ) for each parameter. Three 

models are estimated: the full model and two reduced models with hypothesis 2 (Model Ri) 

and hypothesis 3 (Model R?) respectively. 

B. Estimation Result 

The resulting parameter estimates of three models are presented in two Tables, 3a and 

3b. Table 3a lists parameter estimates for socio-demographic variables and mean and 

dispersion parameters for random coefficients for lake amenity variables. Except for age and 

household size variable in full model, all the coefficients are significant at 1% level while age 

square variables in three models are significant and positive. In general, these variables do 

not vary substantially across the three models. Note that the socio-demographic data are 

included in the conditional indirect utility for the stay-at-home option. Therefore, male 

individuals are more likely to take a trip to a lake. Age has a convex relationship with the 

stay-at-home option and therefore has a concave relationship with trips. Higher-educated 

individuals appear to be more likely to stay-at-home, with corresponding positive coefficients 

on the school variable. The price coefficients are all negative and significant and virtually 

identical in three models. 

Turning to the site amenities, all of the parameters are of the expected sign. As the 

size of a lake increases, has a cement boat ramp, gains handicap facilities, or is adjacent to a 

state park, the average number of visits to the site increases. Notice, however, the large 

dispersion estimates. For example, the dispersion on the size of the lake indicates almost all 
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people prefer bigger lakes. The large dispersion on the "wake" dummy variable seems 

particularly appropriate given the potentially conflicting interests of anglers and recreational 

boaters. Anglers would possibly prefer "no wake" lakes, while recreational boaters would 

prefer lakes that allow wakes. It seems the population is roughly split, with slightly more 

than a half of the visitors preferring a lake that allows wakes and the rest of visitors 

preferring a "no wake" lake. Lastly, the mean of ai, the trip dummy variable, is negative, 

indicating that on average the respondents receive higher utility from the stay-at-home 

option, which is expected considering the average number of trips is 7 out of a possible 52 

choice occasions. On the other hand, the mean of /?,. is positive, indicating that on average 

respondents anticipate receiving higher utility from taking the trips in 2005 regardless of 

water quality. The dispersion on /?,. is relatively small, though statistically significant, 

indicating the most individuals have /?. > 0. 

The three parameter estimates regarding individual's water quality responses are 

reported in Table 3b. Beginning with the full (unconstrained) version of the model, all three 

of the water quality related parameters are statistically significant. As was the case in chapter 

3, the parameter 5 indicates that individuals do respond positively to water quality 

conditions. There also appears to be a statistically significant, though small, increase in this 

response between 2004 and 2005, with S05 = 0.021. Finally, the response to the increased 

(hypothetical) water quality is little bit smaller than the response observed to actual water 

quality for s = 04 and 05, with SH slightly decreasing the marginal impact of a water quality 

change. 

Therefore, hypothesis that individuals do not respond differently to hypothetical 

water quality improvements H\ is rejected. It is also the case that individuals have a 

somewhat larger response to water quality in terms of their 2005 trip plans. The likelihood 
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ratio test statistic comparing the full model versus Ri is ^2= 55.4 with 2 degree of freedom 

so that Hi is rejected withp-value is less than 0.001. Similarly, the joint hypothesis 

Hi : /?, = 505 =SH= 0 is rejected at 1% critical level, with a likelihood ratio test statistic of 

X2= 63.8 with 3 degree of freedom. The individual marginal responses to water quality 

conditions in 2004 and 2005 and hypothetically improved water quality are significantly 

different with a marginal effects of 0.15, 0.17, and 0.13, respectively. 

VI. Welfare Estimation 

The results of the previous section indicate that individuals respond less to the 

hypothetical water quality improvement than they do to actual water conditions. In this 

section, the impacts of year-to-year variation and the hypothetical water quality improvement 

are investigated in terms of the predicted trips and annual compensating variation (CV) under 

a water quality improvement to Storm Lake. The current water quality of Storm Lake is rated 

as a 5, which is "fishable" according to EPA's water quality ladder. The proposed change is 

to improve water quality of this lake up to 7, which is "swimmable". The question is: while 

the CB data yield a statistically significant different marginal response to water quality, are 

the predicted trips and welfare implications substantially different? 

The full (unconstrained) model is used for welfare estimate in order to capture the 

three responses of individuals to actual water conditions in 2004 and 2005 and to 

hypothetical water quality improvements. Based on the test results in Section V and the 

random parameter vector estimates, 0, = (cci,/3i,yj)', the conditional compensating variation 

associated with a change in water quality index from Zs to Z' for individual i on site choice 

occasion t under scenario s is given by 
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en, (<?, ) = 11 tait exp(P<.„ [z; ;0, ])] - ln[^exp(^.„ [Z,;6,])]L (6) 
A [ y=o y'=0 J 

which is the compensating variation for the standard logit model. The unconditional 

compensating variation does not have a closed form, but it can be simulated by 

cv„ (6,) = |Êt| mÉ ="P(^, IK-A'W- «p<^„ [Z,;<])]}, (?) 
-fV r=l A [ /=0 y=0 J 

where R is the number of draws and r represents a particular draw from its distribution. The 

simulation process involves drawing values of 0, = ((%,,/?,,/,)' and then calculating the 

resulting compensating variation for each vector of draws, and finally averaging over the 

results for many draws. A total of 2,500 draws were used in the simulation. One thing to note 

is that, although indirect utility function depends on scenario s, summation in the bracket 

should be over the sites j only. Since indirect utility function takes three different forms with 

respect to three scenarios, three compensating variations are estimated. 

The resulting welfare estimates are provided in Table 4, along with the predicted 

number of trips under each of three models (s = 04, s = 05, and s = 05H). Mean predicted 

trips and after improvement predicted trips do not vary much across three scenarios. After 

improving Storm Lake's water quality up to "swimmable" predicted trips to Storm Lake 

water condition scenarios increases up to 33% (from 0.12 to 0.16). In contrast, predicted trips 

to Storm Lake under hypothetical water quality scenario are little changed. 

The annual compensating variation (CV) estimates per Iowa household under actual 

water conditions are somewhat larger based on the 5 = 05 versus the s = 04 responses ($1.24 

and $1.11 respectively). In contrast, the annual compensating variation per Iowa household 

based on the hypothetical water quality improvement scenario (s = 05H) is reduced to $1.01. 
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This is the lowest compensating variation among those obtained under the three scenarios. 

One possibility is that individuals do not believe the hypothetical water quality improvement. 

Aggregating to the annual value for all Iowans simply involves multiplying by the number of 

households in Iowa, which is 1,153,205.31 

VII. Conclusion 

Individual's response to hypothetical water quality improvement is measured and 

tested whether it is significantly or not using three sets of trip data for 131 lakes in Iowa: 

actual trips in 2004, anticipated trips in 2005, and anticipated trips in 2005 given a 

hypothetical improvement to the lakes. The trip data sets are collected from the 2004 Iowa 

Lakes Survey. The hypothetical water quality scenario is to improve all lakes in the state to 

be at least safe for swimming. Survey respondents appear to increase their anticipated trip to 

the improved lakes. A Repeated mixed logit model estimation result shows that individuals 

respond less to the hypothetical water quality improvement than they do to actual water 

quality. One explanation may be that individuals do not believe hypothetical water quality 

improvements will indeed occur. 

The results in this chapter should be of some comfort to policymakers and 

practitioners. While the marginal response to hypothetical water quality changes are smaller 

than observed responses, and the difference is statistically significant, the differences are 

small. Moreover, at least for the Storm Lake water quality scenario, the implications in terms 

of trips and welfare measures are also small. Whether these results hold up in other settings is 

an empirical question. 

31 Number of Iowa households as reported by Survey Sampling, Inc., 2003. 
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One issue in jointly estimating the model using the three data sets is scale parameter 

estimation although this is not investigated in the analysis. Although the error generation 

process for a collection of next year trip and contingent behavior trip might be expected to be 

the same, it may be different from the process producing the actual trip data. In particular, the 

effect of unobserved variables may produce different variances for the sijts terms in the three 

data sets. In this case the variance of one data set must still be normalized to unity, but the 

relative variance for the remaining data set is identified and can be estimated. By convention, 

the actual trip data are assumed to reflect the baseline scale associated with the "observed 

behavior". Anticipated trip data sets scale coefficients are then defined as the multiplicative 

factor applied to all of the two data sets to equalize the variances of the stochastic portion of 

the utility function. Because scale and variance have a reciprocal relationship, values less 

than one imply that the next year and contingent behavior data sets variance is larger than the 

observed trip data variance component. Thus, one refinement of the current analysis would 

be to allow for different variance scales between the RP and CB data. 
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In order to make sound decisions 

concerning the future of Iowa lakes, 

it is important to understand how the 

lakes are used, as well as what (actors 

influence your selection of lakes to visit. 

The answers you give to the questions in 

this survey are very important. Even if 

you have not visited any lakes in Iowa, 

please complete and return the 

questionnaire. It is critical to understand 

the characteristics and views of both 

those who use and those who do not use 

the lakes. 
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In this first section, we would like to And out which of the lakes in the en
closed map you visited in 2004 and how your lake visits might change in the 

future with changes in lake water quality. 

1. Mom* indicate in the Ara column how often in 2004 you or other members of your household 
visited each of the lakes listed on the following pages for * single day trip. In this questionnaire, we 
will be asking you detailed information only about your single day trips (aid not overnight trips). 
If you did not visit any lake in Iowa in 2004, please check this box. 

D 1 did not visit amy lakes in Iowa in 2004. 

If you took overnight trips to Iowa lakes in 2004 please check this box 

O I took one or more overnight trips to lakes in Iowa to 2004, 

2. Please indicate in the second column how many single day trips you plan to make to each of the 
lakes in 2005. If you do not plan to visit any lakes in Iowa in 2005. please check this box 

O l d *  m o t  p l a n  t o  * M l  a n y  l a k e *  I n  l e w *  I n  1 0 0 3  
3. There ate currently edbns underway tu impimc tlx water quality of lowaS lakes. We are interested 

in knowing how these changes might impact your single day trips lo lakes. One way ol thinking 
about water quality is to use a laddet like tlie one shown below. The top of the water quality ladder 
stands for the best possible quality of water, and the bottom of the ladder stands for the worst. On 
the ladder you can sec the different lewis of water qtwln\ 

For example: The lowest level is so polluted that it has oil, taw sewage, 
and/or other things in it like trash: it has almost no plant or animal life, 
smells bad, and contact with it is dangerous to human health Water 
quality tliat is ^beatable" would not harm you if you happened to fall into 
it for a short time while boating or sailing. Water quality that is "ùshable" 
is a higher level of quality than 'boataWe." Although some kinds of Itsh 
can live in boataWe water, It is only when water is "Rshabk" that game 
fish like bass can live in it. Finally, "swimmnble" water is of a high 
enough quality that it is safe to swim in and ingest in small amounts. 

For each of die lakes below, we have Indicated the current water quality 
conditions in terms of the water quality ladder. For example. Arbor Lake 
in Powershick County is currently rated as a 6 on the water quality 
ladder, This is above the minimum forfishable. but below the swimmable 
level. Badger Creek Lake In Madison county, on the other hand, has a 
current water quality level of 4. which Is okay for boating, but not 
fishabk. In the last column of the table, we would like you to indicate 
how many angle day trips you would make to each of the lakes given all 
of the lakes were improved to at least swimmable (7). Notice that many 
lakes are already at or above the swimmable level. Please keep in mind 
that you may choose to take fewer trips to some lakes, while taking more 
trips to others. If you would not plan to take any trips to Iowa lakes, even 
given the water quality improvements, please check the following box: 

Water Quality Ladder 

33 
^— 

•* " 
ea-

R-

Safe for 

GawWfi 
Wabe 
a»W»« 

Curw bwAqi 

pWdM 

«W Wi 

• 1 would not plan to visit any lakes In Iowa in 1005 even if the water quality improved 
as indicated. 

Imvn Ujkfj Swryry /3 
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iÇeuntyL 

Hwwb#f ## VisHs 
Actuel 

.. 2004 2005 
0»WN* 

Anticipated 
Day Trip» 

wWi Ww Mehw 
Proposed 

««I Wat.r Qualify 

Weter Quality Ladder 

Lake Ahquabi (Warren) * (trips) * (tups) M m# S (lf'93} 
UMte An# {Cess) #—m»; a G * . . (tnps1 

Arbor Lake (Poweshiek) » (trips) *_ a » # _  

Arrowhead take <Pon&w5ttiamie) » (Ws) *.—MPI a # _„„<ïrtpsî 
Arrowhead Pond (Sac) *. imps) *. . |Mp«) a k_ ^"P8> 
Avenue d the Sain® Lake 

tStsmer) «— *—m») a B , 
Badger Creek Lake <M&ctesort) * |tnp«) . («%») n M t. i*np#i 
Sadger Uke (W#b#W) » Onpa) * — a a » 

Beaver Lake {Dallas) » llnpw » Itr^s) 
8ee<f$ take (Ftafikhn) * («**) » (**«) a #„ 

8»g Creek Lake (Pok) « (mp*i « _ 'W»| » « 
Btg Lake (Oickmsori) * (MM) a a * C***) 
8kck Hawk Lake (Saci » |Mp*| » '"Ml M B Uips) 
Woe Lake (Monona) * * (***) n R #  ™Jtnps) 
Bob While Lake (Wayne) * _ »_ . flMP** , B (»nps> 
6nggs Woods Lake » fmpw « W) ** * 

(&V#) 
Brown's Lake (Woodbury) » (trips) * „ (tops) a * (trips) 
Brushy Creek Lake <Websten * (***) » _(*P*I a » #_ «r*p«j 
Carter Lake (Pcmewa*mm*ej * (Inpi, * tmpil « » #  imp#) 
C&sey Uke <aka ***** W 

(%ma) *—m*) * m « #_ —(MP#) 
Center Lake (Dickinson) * t'np») * JMp*) » * (tnpa) 
CwW&i Fark tska Monss) * M*| ' . MP*) a El Mm) 

Gear Lake (Cerro Gordo) * # ikipa) L3 a ,.(trip«) 
GoW Sprtngt Uake (Gam) *—mw a M < (Wp.) 
Corah/Me Lake (Johnson) * ((MP*) » 'np«) a sa t«Ape) 
LA# Cometia (Wnghn « (Mp.) * W") a A Crawford Ctmk (mpoundmem (Ida) * (Mp»l *—_(***) # a M») 
Crystal Lake (Hancock) * (WP«) (Mp«) EG _<*rfp8) 
Om WWW Lake » (***) * _(Wp*l a a * ..-jwm 

Lake D#Ang (Washington) * (WP«) * » * — 

DeSoto Bemd Lake (Hamson) " WN » (Mp*) m a Diamond Lake (Poweshiek) * (*%*) « (MP# a a # Onp#) 
Dog Creek (Lake) (Q'Brwti * (mp«) * (I'll*) M M # (***) 
Don WÎWams Lake (Boone; »_ * (WpW » mi (*np#) 
East Lake (Osceola) (Clarke) *_ (WW * (W») m ma *. (fr'ps) 
a* Okûbon Lake ( Dckbson) * W) * (*P«) * a (***> 
Easter Lake (Polk) * (TiP«) a m » 

Eldfed Shermod Uke (Hsncdek.) * 04*1 * a m Fve island Lake (Pat) Alto) * « PM») M a # (%npe) 
fogle Uke (Bngyoid} * ;mp*,) * (**») m a # 3*P%) 
Lake Geode 
George Wyth Uke (Keck Hawk) 

« "-T") 
* _ IMP*) 

m 
m 8 s 

# 
(idp*) 

Green Ben Lake (B»ck Hwk) " 't"W m. 9 _ t« T*' 

WiwW 

4 / Iowa Lokrs 
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Witmfewr of VlsHs 

Anticipât#*! | 
o»y TMp«| Weter Duality Ladder 

wltt* 1 

Nam• of Lak* (County) 
Actual 
2004 

A* Ulclpated Water duality 
2005 Currenf. Proposed 

Proposed ! 
JW*t«r Q»»Utx__j 

# (frips) î Ottar Cm# La&e (Tamstl « (W) * (MM » « 
Proposed ! 

JW*t«r Q»»Utx__j 

# (frips) î 
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# _(MM ; 
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aww»(Pwo**,) * Mm) ' «Mm) <3 e • ... (Mm) i 
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g 
# (Mm) 

TWve Mm Creak Lake (LWw) » (**»< (Mm) m 
g 

—(Mm) 

U*on Gmve Lake (Tama) * _ (fmi , Mp^) m m *.. ....(Mm) 

Vpp#l Oaf Lake (Dk*ti>aon) " (Mmi (Mm) w #3 —M») 

Upp# Pine uke (HanSi) * (MM ». __.(Mm) a m .. ..(idm) 

VWng take (Wnigoirrery) * (Mm) # (Mm) m a * (Mm) 

VWga Lake (Fay#*#) « Cm») # (Mm) a m a (Mm) 

Uke Wapefio (Davw) * (Mm) », (MM a #* *. —Mm) | 
West Okoboji Lake {Dickinson} *—(Mm) —(Mm) M a * (trip*) 1 

West Oecaofa Lake (CWhe) *—Mmt »  M m M __(»*») 

Whits Ok Uke (Mahaska) *—(immt » ....(Mm) « a —(mm) 
Wtmmmn FW (Luoae) *— * —(Mm) m « (Mm) 

Wtfiow Lake (HaMaon) * (Mmi 4 (Mm) a a » (Mm) ' 

*»fe $e #r*k 

«A#-

IWWn 
tan live * rf 

thy bf boâhaç 

C*gM*h 
pekW 

(> / iowa Likes Survey 



www.manaraa.com

135 

Nwm&er of VWt# 

Name of L#k* e___ 

| Wilson Park Lake (Tâyky) I 
fyMti»Lake(rsybr| j#. 
Yettow Smoke Park Lake iCmwfofd) # _ 
Otfw Lake» m fowa_. 

2004 

, (tnp5) 

2005 

f'rîpa) 
-,nnp»> 

Anticipated 
Single Day Trip* 
with the higher 

Water Quality Proposed 

Q M I * M») | 
a *—tww I 

Q a I « (up*: I 
N* Chang# | * (*W | 

Water Quality Ladder 

4. Of the nips you've reported on the preceding pages what percentage 
of these were 

a) alone <* only with members of your immediate household 

b) with Mends or members of another household 

c) trips members of yoor household took but you did not 4 

% 

100% 

«**#*# 

Obybrtwa,! 

Information on you and other members of your household will 
help us better understand how household characteristics affect 

an individual's use of Iowa lakes and attitudes towards changes in them. It will 
also help us to determine how representative our sample is of the state of Iowa. 
All of your answers are strictly confidential. The information will only be used to 
report comparisons among groups of people. We will never identify individuals or 
households with their responses. Mease be as complete m your answers as 
possible. Thank you. 

What is your age? 

O Under 18 02M4 

Q18-25 Q35-49 

O50-59 076+ 

O60-75 

6. You are 

OMale OFemale 

What is the highest level of schooling that you have completed? (Please check only one) 

QSome high school or less OSome college or trade/vocational school OAdvanced degree 

OHigh school graduate OCollege graduate 

Jmva Lakes Survey / 7 
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How many children live in your household (18 or under)?. 

9. How many adults (including yourself) live in your household? . 

10. What is your total household income before taxes (or 2004? 

OUnder$IO.OOO 0$15,000-S29,999 O*30j00(W59400 0$125,000-$149.000 

O $10,000-514.900 0$30,000-$M,999 O$60.000-$74.999 Dover $150,000 

OS15.000-S19.900 0)35,000-539.999 0175.000-S99.999 O $20,000-124,999 

CK40.000-MQ.999 0$I(X),000-S124,000 

11. How many of the adults you reported in question 9 contribute to your reported household 
income? 

Information on employment helps us better understand how time spent 
working affects an individuals or household^ use of Iowa lakes since time 

spent at a recreational spot is dme that cannot be spent at work. Again, all of 
your answers are strictly confidential. The information will only be used to 
report comparisons among groups of people. We will never identify individuals 
or households with their responses. Please be as complete in your answers as 
possible. Thank you. 

11 What is your current employment status? 

OFull âme Opart time Oself-employed Ostudent Ounemployed Oreiired 

13. If you are currently employed, how many weeks per year do you work? 

lia. Of these weeks, how many are paid vacation? 

14. If you are currently employed, how many hours per week do you typically work? 

15. If you are currently employed, are the number of hours you work per week scheduled for you 
(for example, your employer requires a 40 hour work week, or schedules hours in advance), or 
are you free to choose, when and how long you work? 

OFixed/scheduled hours OFree to choose 

8 / Iowa Ldkn Survey 
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16. K you had the opportunity to work kwer hours and receive less income, or work more hours 
and receive more income, would you change your weekly work hour:, and If so by how much? 

ONo, I weald mo* change my weekly w*rk boar* 

DVes, 1 would change to working fewer hours and receive less income 

16a. How many lag hours would you work per week, if you could work as many hours 
as you wanted? 

•Yes, I would change to working more hours and receive more income 

16b. How many more hours would you work per week, if you could work as many hours 
as you wanted? 

17. If you are currently employed, ate you paid an hourly wage, or do you receive a salary? 

O: am paid mm hourly wage 
Wage per hour is approximately. 

OUnderSS.OO 0*11.00412.99 0*19.00420.99 

0*5.0046.99 0si3.00414.99 0*21.00422.99 

OS7.OOS8.99 0*15.00416.99 0323,00424.99 

0*9.00410.99 OS! 7.00418.99 0*23.00426.99 

0*27.00428.99 

Oover $29.00 

• l am paid a salary 

Yearly salary is approximately: 

O Under $10.000 0525.000429,999 

0*10,000414.900 0*30,000434.999 

0*15.000419.900 0*35,000439.999 

0*20,000-524.999 0540.000-S49.999 

OS50.000459,000 

0560.000474.999 

0$75,000.$99.999 

0*100,000-5124.000 

0*125.000-5149.000 

Dover *150,000 

If there is a second adult in your household, please answer the same set of 
questions for that person. 

18. What is the other adult's current employment status? 

OFull time Opart time Oself-cmployed Ostudent 

Ounemploycd Orctired 

19 If the other adult is currently employed, how many weeks per year does lie/she work? 

19a. Of these weeks, how many are paid vacation? 

iowci Ldfers. .Survey / 9 
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20. If ibe other «dull b currently employed, how many hours per week does he/she typically 
work? 

21. If (he other adult is currently employed, are the number of hours he or she works per week 
scheduled for him or her (for example, his or her employer requires a 40 hour work week, or 
schedules hours in advance), or is he or she free to choose when and how ton# he or she works? 

OFixed/schcduled hours QFree 10 choose 

22, If the other adult had the opportunity to work fewer hours and receive less income, or work 
more hours and receive more income, would he/she change his/her weekly work hours, and if so 
by how much? 

ONo, the other adult would net change his/her weekly work hours 

•Yes, the other adult would change to working fewer hours and receive less income 

21a. How many less hours would the other adult work per week, if he/she could work as many 
hours as he/she wanted? 

•Yes, the other adult would change to working more hours and receive more income 

21 b. How many more hours would he/she work per week, if he/she could work as man)- hours 
as he/she wanted? 

23. If the other aduli is currently employed. Is he/she paid an hourly wage, or does he/she 
receive a salary? 

OTbe other «dull is paid an homrly wage 

Wage per hour is approximately: 

OUndcr 15.00 0$11.00-S12.99 OS19.00420.99 OS27.0042H.99 

OS5.0046.99 OSI3.00-S14.99 OS21,00422.99 Dover $29.00 

DS7.0048.99 OS15.00416.99 OS23.00424.99 

OS9 00410.99 OS 17.0041 H.99 OS25.00426.99 

•The other adult is paid a salary 

Yearly salary is approximately: 

OUnder $10,000 DS25.000-S29.999 OS50.000-S59.000 OS125.000-S149.000 

0si0.000414.900 QS30.000434.999 OS60.000474.999 0(WerSl50.000 

OS15,000419.900 OS35.000-S39.999 OS75.000499.999 

DS20.000-S24.999 DS40.000449.999 OS 100.000-S 124.000 

10 / kwa WW Swfvti 
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Appendix B. Tables 

Table 1. Summary Statistics of total number of trips and socio-demographic variables3 

Mean Std. Dev Minimum Maximum 

2004 (Observed) Day Trips 6.65 8.88 0 50 

2005 Anticipated Day Trips 9.11 10.88 0 52 

2005 CB Day Trips 9.26 11.35 0 52 

Income $58,608 $37,160 $7,500 $200,000 

Male 0.65 0.47 0 1 

Age 54.46 15.57 15 82 

School 0.70 0.46 0 1 

Household Size 2.45 1.23 1 10 

a Sample Size = 782 individuals 
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Table 2. Average Number of Trip Changes3 

Initial Water Quality 

Proposed Water Quality 

12.0 

(1) 

14.4 

(5) 

4.4 

(25) 

6.5 

(21) 

-3.7 

(32) 

-2.0 

(43) 

-1.8 

(4) 

Sample Size =131 Lakes and parentheses are number of lakes 
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Table 3a. Parameter Estimates3 

Full Model Model R, Model Rz 

Price -0.381 -0.382 -0.382 
(<0.001) (<0.001) (<0.001) 

Male -9.137 -3.624 -3.673 

(0.265) (0.264) (0.264) 

Age -0.534 -4.889 -4.831 

(0.495) (0.451) (0.453) 

Age2 0.451 0.929 0.921 
(0.044) (0.041) (0.041) 

School 2.852 5.276 5.271 
(0.289) (0.293) (0.293) 

Household Size -0.082 0.957 0.941 

(0.122) (0.113) (0.113) 

Mean Estimate for Random Coefficient 

Log (Acre) 0.411 0.397 0.397 

(0.005) (0.005) (0.005) 

Ramp 13.189 13.059 13.001 
(0.577) (0.574) (0.570) 

Wake 0.307 0.542 0.514 
(0.143) (0.147) (0.146) 

Facility 7.245 6.672 6.655 
(0.183) (0.174) (0.174) 

State Park 1.645 1.543 1.448 

(0.183) (0.187) (0.185) 

cc, -10.693 -10.071 -10.069 
(0.034) (0.024) (0.024) 

P 0.835 
(0.027) 

Dispersion Estimate for Random Coefficient 

Log (Acre) 0.310 0.309 0.308 
(0.004) (0.004) (0.004) 

Ramp 17.321 16.907 16.793 
(0.421) (0.405) (0.401) 

Wake 11.439 11.385 11.398 
(0.136) (0.136) (0.135) 

Facility 12.481 11.258 11.278 

(0.160) (0.156) (0.156) 

State Park 9.903 10.248 10.262 
(0.178) (0.170) (0.169) 

a, 2.531 2.599 2.599 
(0.021) (0.021) (0.021) 

P 0.202 
(0.017) 

Parentheses are standard errors 
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Full Model Model Ri Model R2 

2,(4 0.151 0.163 0.167 

(0.008) (0.005) (0.005) 

Z,xD05 (<^) 0.021 

(0.009) 

-0.042 -0.048 

(0.008) (0.008) 

Likelihood Value -99,008.3 -99,036.0 -99,040.2 

Parentheses are standard errors 

Table 4. Welfare Estimates 

5 = 04 5 = 05 5=05# 

Mean Predicted Trip 10.58 10.59 10.52 

Mean Predicted Storm Lake Trip 0.12 0.12 0.14 

After Improvement 

Predicted Trip 10.60 10.61 10.61 

Predicted Trip to Storm Lake 0.16 0.16 0.15 

Average CV 

Per Choice Occasion $0.02 $0.02 $0.02 

Per Iowa Household $1.11 $1.24 $1.01 

For all Iowa Household3 $1.27 $1.43 $1.17 

a Units are million dollars. 
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Chapter 5. Conclusions 

The purpose of this dissertation was to improve on existing nonmarket valuation 

techniques by incorporating three sources of information rarely used in the literature. Two 

approaches to nonmarket valuation techniques were considered: one is dichotomous choice 

referendum (DCR) format in contingent valuation studies and the other is recreation demand 

model. The former is a stated preference approach and the latter is a revealed preference 

approach. Prior information on (and uncertainty about) the distribution of willingness to pay 

(WTP) was incorporated in chapter 2 when designing DCR surveys. Individual perceptions 

regarding on environmental quality were considered (in chapter 3) and contingent behavior 

data based on hypothetical environmental quality improvement was utilized (in chapter 4) in 

order to investigate the impact of hypothetical water quality improvement on the recreational 

demand pattern. 

Chapter 2 illustrated the benefits and consequences of including prior information 

(and prior uncertainty) in the design process. In general, in the case of single stage design, 

the results indicate that optimal spread in the bids and the optimal number of bids points 

increase with the parameter uncertainties. In addition, cost of ignoring prior uncertainty about 

the parameters of WTP distribution appears to be substantial when using both the bid 

function approach and utility difference approach. Using the Cameron's (1988) bid function 

approach, rather than Hanemann's (1982) utility difference approach avoids problems 

associated with the moments of the ratio of two normal variables. The use of alternative 

approximations to the expected posterior WTP and alternative optimization technique are 

illustrated. The normal approximation to posterior variance results are similar to those 

obtained using Tierny-Kadane's method. In addition, curve-fitting method is shown to be a 

usable alternative to direct optimization routine. The curve-fitting method results illustrate a 

number of important points regarding the optimal bid design. First, the expected posterior 

variance (EPV) surfaces depends all of the attributes of the prior distribution; i.e., on prior 
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distribution of the mean WTP and on the prior distribution for the dispersion of WTP in the 

population. Second, the impact of the uncertainty regarding the mean WTP appears to be 

larger than that of mean dispersion in the population WTP. Third, the EPV is relatively flat 

over a wide range of optimal width values. This suggests that while it is important to 

incorporate prior information in designing the optimal bid values, identifying precisely the 

optimal bids is not crucial. In the case of a sequential design, utilizing curve-fitting method is 

shown to be alternative way to implement the sequential design. I find that the number of 

sample size for the pre-test survey and the pre-test stage optimal bids increases with the 

parameter uncertainty and they are wider than those of the final survey stage. The optimal 

bids at the complete survey stage shrinks as the number of sample size at the pre-test stage 

increases. 

The results of chapter 2 answer the frequent questions about the bid design for 

researchers conducting contingent valuation surveys. The frequent questions in the single 

stage design would be: 1) how many bid points should be placed; 2) how wide the spread of 

bid points should be; 3) how precisely the bids should be selected; in the sequential design 

case, 4) what is the optimal allocation of the sample between the pre-test and final survey? 

The answers which I find in chapter 2 are: 1) a two or three point design usually suffices 

even when there is substantial uncertainty about the distribution of WTP, 2) placing wider 

bids is recommended when the uncertainty about mean WTP is huge, 3) due to the flat 

curvature of EPV surface, precise selection of optimal bids is less important, 4) when the 

uncertainty about mean WTP is huge, one third up to two third of total samples is 

recommended for the pre-test survey and the optimal bids at the final stage depends on this 

allocation. 

In chapter 3,1 find the importance of incorporating individual perceptions regarding 

water quality. Individual's day trip data collected from Iowa Lakes Survey 2003 shows that 

perceptions regarding water quality appears to influence individual's site choice decision and 
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their perceptions on water quality do not perfectly align with scientist and/or EPA's view to 

water quality. Correlation coefficients of mean water quality perceptions with physical water 

quality measures (including EPA's water quality index) indicates that this disparity depends 

on what activities an individual participates in at the lakes where he/she visits; i.e., water 

quality perception of each individual is linked with the physical water quality measures 

through individual's activities at the lakes where they visited. Regression analysis shows that 

physical water quality measures partly explain individual water quality perceptions. Repeated 

mixed logit model estimation results illustrate that individual site choice decision depends 

significantly on physical water quality, the water quality index and water quality perceptions. 

The estimation models with perceptions included outperform the models without such 

perception information. Both annual compensating variation and annual predicted trips 

ignoring individual's water quality perceptions are reduced substantially when compared to 

models including water quality perception information. 

The benefits of combining contingent behavior (CB) data based on hypothetical 

environmental quality improvement and revealed preference (RP) data are illustrated using 

the data collected from the Iowa Lakes Survey 2004 in chapter 4. Three types of day trips are 

jointly modeled: actual trips in 2004, anticipated trips in 2005 under current conditions, and 

contingent behavior trips in 2005 under hypothetically improved water quality. The results 

from both simple summary statistics and a Repeated Mixed logit (RXL) model indicate that 

survey respondents anticipate increasing their trips in response to the hypothetically 

improved lakes, with a corresponding decrease in their trips to those lakes that are not 

improved. While the RXL model does indicate that survey participants were less responsive 

to the hypothetical water quality changes than they were to actual difference currently 

existing across lakes, the differences in response were small and the implications in terms of 

estimated welfare changes was small. 
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